Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 1, Pages 166–171
DOI: https://doi.org/10.4213/tvp887
(Mi tvp887)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On the probability of the existenceof a localized basic state for a discrete Schrödinger equation with random potential, perturbed by a compact operator

S. V. Savchenko

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Full-text PDF (406 kB) Citations (1)
Abstract: Let $H_d$ be the difference Laplace operator in $l_2(\mathbf{Z}^d)$ and $\mathbf{W}$ be a discrete potential (a bounded diagonal operator). We search for the conditions on the spectrum of the operator $H_d+\mathbf{W}$ under which the complete Hamiltonian $H_d+\mathbf{W}+\mathbf{V}(\omega)$ with random potential $\mathbf{V}(\omega)$ has a localized basic state (a) with positive probability and (b) with probability 1. We prove that the condition that the maximal point of the spectrum of $H_d+\mathbf{W}$ is isolated from the remaining spectral points of the operator is sufficient for (a) to be true (if $\mathbf{W}$is a compact operator this condition is necessary). Respectively, the condition that the length of the random potential does not exceed the distance between the maximal point of the spectrum of $H_d+\mathbf{W}$ and the rightmost point of its essential spectrum is a sufficient one for (b) to be true. It is shown that if $\mathbf{W}$ is an operator of rank 1, then this condition is necessary.
Keywords: indecomposable symmetric matrix, boundedself-adjoint operator, discrete Schrö, dinger equation with random potential, compact diagonal operator, operator of rank 1, translation-invariant measure, Anderson's model.
Received: 17.09.1997
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 1, Pages 158–162
DOI: https://doi.org/10.1137/S0040585X97976775
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Savchenko, “On the probability of the existenceof a localized basic state for a discrete Schrödinger equation with random potential, perturbed by a compact operator”, Teor. Veroyatnost. i Primenen., 43:1 (1998), 166–171; Theory Probab. Appl., 43:1 (1999), 158–162
Citation in format AMSBIB
\Bibitem{Sav98}
\by S.~V.~Savchenko
\paper On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 1
\pages 166--171
\mathnet{http://mi.mathnet.ru/tvp887}
\crossref{https://doi.org/10.4213/tvp887}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1670012}
\zmath{https://zbmath.org/?q=an:0928.60055}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 1
\pages 158--162
\crossref{https://doi.org/10.1137/S0040585X97976775}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079809600016}
Linking options:
  • https://www.mathnet.ru/eng/tvp887
  • https://doi.org/10.4213/tvp887
  • https://www.mathnet.ru/eng/tvp/v43/i1/p166
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :158
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024