|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
Yu. P. Chuburin, T. S. Tinyukova, “Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024), 286–298 |
|
2023 |
2. |
T. S. Tinyukova, Yu. P. Chuburin, “Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry”, Izv. IMI UdGU, 62 (2023), 87–95 |
|
2022 |
3. |
Yu. P. Chuburin, T. S. Tinyukova, “Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator”, TMF, 212:3 (2022), 414–428 ; Theoret. and Math. Phys., 212:3 (2022), 1246–1258 |
4. |
Yu. P. Chuburin, T. S. Tinyukova, “Interaction between subbands in a quasi-one-dimensional superconductor”, TMF, 210:3 (2022), 455–469 ; Theoret. and Math. Phys., 210:3 (2022), 398–410 |
1
|
|
2021 |
5. |
Yu. P. Chuburin, T. S. Tinyukova, “Behaviour of Andreev states for topological phase transition”, TMF, 208:1 (2021), 145–162 ; Theoret. and Math. Phys., 208:1 (2021), 977–992 |
3
|
|
2020 |
6. |
Yu. P. Chuburin, T. S. Tinyukova, “Mutual transition of Andreev and Majorana bound states in a superconducting gap”, TMF, 205:3 (2020), 484–501 ; Theoret. and Math. Phys., 205:3 (2020), 1666–1681 |
2
|
7. |
T. S. Tinyukova, Yu. P. Chuburin, “The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator”, TMF, 202:1 (2020), 81–97 ; Theoret. and Math. Phys., 202:1 (2020), 72–88 |
2
|
8. |
T. S. Tinyukova, Yu. P. Chuburin, “Investigation of eigenvalues and scattering problem for the Bogoliubov–de Gennes Hamiltonian near the superconducting gap edge”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 259–269 |
|
2019 |
9. |
T. S. Tinyukova, Yu. P. Chuburin, “Andreev reflection in the $p$-wave superconductor–normal metal contact”, Izv. IMI UdGU, 54 (2019), 55–62 |
2
|
10. |
T. S. Tinyukova, Yu. P. Chuburin, “Majorana states near an impurity in the Kitayev infinite and semi-infinite model”, TMF, 200:1 (2019), 137–146 ; Theoret. and Math. Phys., 200:1 (2019), 1043–1052 |
5
|
11. |
T. S. Tinyukova, Yu. P. Chuburin, “Existence of Majorana bounded states in a simple Josephson transition model”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019), 351–362 |
|
2018 |
12. |
T. S. Tinyukova, “Majorana states in a $p$-wave superconducting nanowire”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:2 (2018), 222–230 |
5
|
|
2017 |
13. |
T. S. Tinyukova, “Scattering and quasilevels in the SSH model”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 257–266 |
|
2016 |
14. |
T. S. Tinyukova, “The quasi-levels of the Dirac two-dimensional difference operator in a strip”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 535–542 |
|
2015 |
15. |
T. S. Tinyukova, “Two-dimensional difference Dirac operator in the strip”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:1 (2015), 93–100 |
2
|
|
2013 |
16. |
T. S. Tinyukova, “Research of the difference Schrödinger operator for some physical models”, Izv. IMI UdGU, 2013, no. 2(42), 3–57 |
17. |
T. S. Tinyukova, Yu. P. Chuburin, “Electron scattering by a crystal layer”, TMF, 176:3 (2013), 444–457 ; Theoret. and Math. Phys., 176:3 (2013), 1207–1219 |
2
|
|
2012 |
18. |
T. S. Tinyukova, Yu. P. Chuburin, “The discrete Schrödinger equation for a quantum waveguide”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 80–93 |
1
|
19. |
T. S. Tinyukova, “Scattering in the case of the discrete Schrödinger operator for intersected quantum wires”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3, 74–84 |
2
|
|
2011 |
20. |
T. S. Tinyukova, “Quasi-levels of the discrete Schrödinger operator for a quantum waveguide”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2, 88–97 |
3
|
21. |
T. S. Tinyukova, “The Lippmann–Schwinger equation for quantum wires”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 1, 99–104 |
5
|
|
2009 |
22. |
T. S. Tinyukova, Yu. P. Chuburin, “Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 3, 104–113 |
5
|
|
Organisations |
|
|
|
|