Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 3, Pages 455–469
DOI: https://doi.org/10.4213/tmf10197
(Mi tmf10197)
 

This article is cited in 1 scientific paper (total in 1 paper)

Interaction between subbands in a quasi-one-dimensional superconductor

Yu. P. Chuburina, T. S. Tinyukovab

a Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
b Udmurt State University, Izhevsk, Russia
Full-text PDF (389 kB) Citations (1)
References:
Abstract: In the framework of the Bogoliubov–de Gennes equation, we study the spinless $p$-wave superconductor in an infinite strip in the presence of some impurity. We analytically determine the wave functions of stable bound states with energies close to edge points of the energy gap. We prove that for a small impurity potential, the contribution of the nearest subbands to the wave functions in the case of energy values close to edge points is very small, and these energy levels are significantly closer to the gap edge than in the one-dimensional case. We also study the bound states with nearly zero energy values; in contrast to the one-dimensional case, they do not have the “particle–hole” symmetry. In the cases under study, in addition to the bound states, there also exit resonance states related to them.
Keywords: Bogoliubov–de Gennes Hamiltonian, superconducting gap, Andreev bound state, Majorana bound state, resonance state, subband.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation AAAA-A16-116021010082-8
075-01265-22-00
FEWS-2020-0010
The work of Yu. P. Chuburin was supported by the financial program AAAA-A16-116021010082-8. This research was funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of state assignment No. 075-01265-22-00 [1], project FEWS-2020-0010 [2].
Received: 12.11.2021
Revised: 12.11.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 3, Pages 398–410
DOI: https://doi.org/10.1134/S0040577922030102
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. P. Chuburin, T. S. Tinyukova, “Interaction between subbands in a quasi-one-dimensional superconductor”, TMF, 210:3 (2022), 455–469; Theoret. and Math. Phys., 210:3 (2022), 398–410
Citation in format AMSBIB
\Bibitem{ChuTin22}
\by Yu.~P.~Chuburin, T.~S.~Tinyukova
\paper Interaction between subbands in a~quasi-one-dimensional superconductor
\jour TMF
\yr 2022
\vol 210
\issue 3
\pages 455--469
\mathnet{http://mi.mathnet.ru/tmf10197}
\crossref{https://doi.org/10.4213/tmf10197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461507}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210..398C}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 3
\pages 398--410
\crossref{https://doi.org/10.1134/S0040577922030102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772448700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139201400}
Linking options:
  • https://www.mathnet.ru/eng/tmf10197
  • https://doi.org/10.4213/tmf10197
  • https://www.mathnet.ru/eng/tmf/v210/i3/p455
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :19
    References:52
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024