Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2019, Volume 54, Pages 55–62
DOI: https://doi.org/10.20537/2226-3594-2019-54-05
(Mi iimi382)
 

This article is cited in 2 scientific papers (total in 2 papers)

Andreev reflection in the $p$-wave superconductor–normal metal contact

T. S. Tinyukovaa, Yu. P. Chuburinb

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk, 426067, Russia
Full-text PDF (128 kB) Citations (2)
References:
Abstract: In this paper, the Andreev reflection is mathematically rigorously studied for the matrix differential Bogolyubov–de Gennes Hamiltonian. This Hamiltonian describes electrons and holes in a one-dimensional hybrid structure normal metal–$p$-wave superconductor. In this case, the physically correct symmetrized form of the Hamiltonian is used, which is described in the article. The Hamiltonian contains two delta-shaped potentials, one of which models an impurity in a superconductor, and the second characterizes the “transparency” of the junction normal metal–superconductor. It is proved that in the case of the topological phase there is an ideal Andreev reflection, i.e., an electron incident from the side of a normal metal (this electron has energy in the lacuna (superconducting gap), which is in the spectrum of the Bogolyubov-de Gennes Hamiltonian) with probability one, is reflected as a hole, regardless of the parameters of potentials describing the impurity and the “transparency” of the junction. For the nontopological phase, the formulas for probabilities of hole (Andreev) reflection and electron (normal) reflection are found. As is common in the study of hybrid structures, the matching method is used.
Keywords: Andreev reflection, Bogolyubov–de Gennes Hamiltonian, spectrum, scattering problem, probability of reflection.
Funding agency Grant number
Ural Branch of the Russian Academy of Sciences 15-8-2-12
Russian Academy of Sciences - Federal Agency for Scientific Organizations AAAA-A16-116021010082-8
ФГБОУ ВО «Удмуртский государственный университет» 2018-03-02
The research was funded by Udmurt State University in the framework of the grant support program for young researchers “Scientific potential–2018”, project number 2018–03–02, and was funded partially by grant of the Ural Branch of the Russian Academy of Sciences, project number 15–8–2–12, and by the financing program AAAA-A16-116021010082-8.
Received: 01.09.2019
Bibliographic databases:
Document Type: Article
UDC: 517.958, 530.145.6
MSC: 81Q10, 81Q15
Language: Russian
Citation: T. S. Tinyukova, Yu. P. Chuburin, “Andreev reflection in the $p$-wave superconductor–normal metal contact”, Izv. IMI UdGU, 54 (2019), 55–62
Citation in format AMSBIB
\Bibitem{TinChu19}
\by T.~S.~Tinyukova, Yu.~P.~Chuburin
\paper Andreev reflection in the $p$-wave superconductor--normal metal contact
\jour Izv. IMI UdGU
\yr 2019
\vol 54
\pages 55--62
\mathnet{http://mi.mathnet.ru/iimi382}
\crossref{https://doi.org/10.20537/2226-3594-2019-54-05}
\elib{https://elibrary.ru/item.asp?id=41435141}
Linking options:
  • https://www.mathnet.ru/eng/iimi382
  • https://www.mathnet.ru/eng/iimi/v54/p55
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :208
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024