01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date:
5.06.1986
E-mail:
Keywords:
approximation theory,
signal processing,
orthogonal polynomials.
Subject:
Approximative properties of discrete orthogonal polynomials.
Main publications:
T. S. Luguev, M. G. Magomed-Kasumov, E. Sh. Sultanov, T. I. Sharapudinov, “Metod szhatiya izobrazhenii s ispolzovaniem diskretnykh polinomov Chebysheva”, Trudy RNTORES im. A. S. Popova, Tsifrovaya obrabotka signalov i ee primenenie, XI-2, Insvyazizdat, M., 2009, 408–411
M. G. Magomed-Kasumov, “Basis Property of the Haar System in Weighted Lebesgue Spaces with Variable Exponent”, Mat. Zametki, 115:5 (2024), 749–758; Math. Notes, 115:5 (2024), 755–763
2.
M. G. Magomed-Kasumov, T. N. Shakh-Emirov, R. M. Gadzhimirzaev, “Basis property of the Legendre polynomials in variable exponent Lebesgue spaces”, Mat. Sb., 215:2 (2024), 103–119; Sb. Math., 215:2 (2024), 234–249
2023
3.
M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials”, Sibirsk. Mat. Zh., 64:2 (2023), 339–349; Siberian Math. J., 64:2 (2023), 338–346
2022
4.
M. G. Magomed-Kasumov, T. N. Shakh-Emirov, “On the Representation of Sobolev Systems Orthogonal with Respect to the Inner Product with One Discrete Point”, Mat. Zametki, 111:4 (2022), 561–570; Math. Notes, 111:4 (2022), 579–586
5.
M. G. Magomed-Kasumov, “Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side”, Vladikavkaz. Mat. Zh., 24:1 (2022), 54–64
2021
6.
M. G. Magomed-Kasumov, S. R. Magomedov, “Fast Fourier transform in a system of functions that are orthogonal in the sense of Sobolev and generated by the Walsh system”, Daghestan Electronic Mathematical Reports, 2021, no. 15, 55–66
7.
M. G. Magomed-Kasumov, “Estimates for the rate of convergence of Fourier series in the Sobolev orthogonal functional system generated by the Walsh system”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021), 73–80
8.
M. G. Magomed-Kasumov, “Sobolev orthogonal systems with two discrete points and Fourier series”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12, 56–66; Russian Math. (Iz. VUZ), 65:12 (2021), 47–55
M. G. Magomed-Kasumov, “The approximation of piecewise smooth functions by trigonometric Fourier sums”, Daghestan Electronic Mathematical Reports, 2019, no. 12, 25–42
10.
M. G. Magomed-Kasumov, “A Sobolev Orthogonal System of Functions Generated by a Walsh System”, Mat. Zametki, 105:4 (2019), 545–552; Math. Notes, 105:4 (2019), 543–549
I. I. Sharapudinov, T. I. Sharapudinov, M. G. Magomed-Kasumov, “Approximation properties of repeated de la Vallée-Poussin means for piecewise smooth functions”, Sibirsk. Mat. Zh., 60:3 (2019), 695–713; Siberian Math. J., 60:3 (2019), 542–558
M. G. Magomed-Kasumov, S. R. Magomedov, “The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system”, Daghestan Electronic Mathematical Reports, 2018, no. 10, 50–60
13.
M. G. Magomed-Kasumov, S. R. Magomedov, “Fast computation of linear combinations of Sobolev functions generated by the Haar functions”, Daghestan Electronic Mathematical Reports, 2018, no. 9, 7–14
I. I. Sharapudinov, M. G. Magomed-Kasumov, “On Vallée-Poissin means for special series with respect to ultraspherical Jacobi polynomials with sticking partial sums”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 9, 68–80; Russian Math. (Iz. VUZ), 62:9 (2018), 60–71
I. I. Sharapudinov, M. G. Magomed-Kasumov, “A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system”, Daghestan Electronic Mathematical Reports, 2017, no. 8, 53–60
M. G. Magomed-Kasumov, “Convergence rate estimate of sine and cosine series with $1/k^q$ coefficients”, Daghestan Electronic Mathematical Reports, 2017, no. 7, 47–51
M. G. Magomed-Kasumov, “Approximation Properties of de la Vallée-Poussin Means for Piecewise Smooth Functions”, Mat. Zametki, 100:2 (2016), 229–247; Math. Notes, 100:2 (2016), 229–244
I. I. Sharapudinov, M. G. Magomed-Kasumov, S. R. Magomedov, “Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind”, Daghestan Electronic Mathematical Reports, 2015, no. 4, 1–14
I. I. Sharapudinov, M. S. Sultanakhmedov, T. N. Shakh-Emirov, T. I. Sharapudinov, M. G. Magomed-Kasumov, G. G. Akniev, R. M. Gadzhimirzaev, “On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid”, Daghestan Electronic Mathematical Reports, 2014, no. 2, 1–32
20.
M. G. Magomed-Kasumov, “Approximation of Functions by Fourier–Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 295–304
M. G. Magomed-Kasumov, “Convergence of Fourier–Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 76–81
M. G. Magomed-Kasumov, “Peculiarities of the partial Fourier–Haar sum behavior at dyadic irrational discontinuity points”, Sibirsk. Mat. Zh., 54:6 (2013), 1331–1336; Siberian Math. J., 54:6 (2013), 1059–1063