Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2015, Issue 4, Pages 1–14
DOI: https://doi.org/10.31029/demr.4.1
(Mi demr15)
 

This article is cited in 5 scientific papers (total in 5 papers)

Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind

I. I. Sharapudinovab, M. G. Magomed-Kasumovab, S. R. Magomedova

a Daghestan Scientific Centre of RAS
b Vladikavkaz Scientific Centre of the RAS
Full-text PDF (413 kB) Citations (5)
References:
Abstract: Using Chebyshev polynomials $T_n(x)=\cos(n\arccos x) (n=0,1,\ldots)$, for any natural $r$ we build a new system of polynomials $\left\{T_{r,k}(x)\right\}_{k=0}^\infty$, orthonormal with respect to the Sobolev type inner product of the following form
$$ <f,g>=\sum_{\nu=0}^{r-1}f^{(\nu)}(-1)g^{(\nu)}(-1)+\int_{-1}^{1} f^{(r)}(t)g^{(r)}(t)\kappa(t) dt, $$
where $\kappa(t)=\frac2\pi(1-t^2)^{-\frac12}$. The convergence of the Fourier series by the system $\left\{T_{r,k}(x)\right\}_{k=0}^\infty$ is investigated. We consider the important special cases of systems of this type. For these instances we obtain explicit representations, that can be used in the study of asymptotic properties of functions $T_{r,k}(x)$ when $k\to\infty$ and study of the approximative properties of Fourier sums by the system $\left\{T_{r,k}(x)\right\}_{k = 0}^\infty$.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Chebyshev polynomials of the first kind.
Received: 07.10.2015
Revised: 18.11.2015
Accepted: 19.11.2015
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, M. G. Magomed-Kasumov, S. R. Magomedov, “Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind”, Daghestan Electronic Mathematical Reports, 2015, no. 4, 1–14
Citation in format AMSBIB
\Bibitem{ShaMagMag15}
\by I.~I.~Sharapudinov, M.~G.~Magomed-Kasumov, S.~R.~Magomedov
\paper Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind
\jour Daghestan Electronic Mathematical Reports
\yr 2015
\issue 4
\pages 1--14
\mathnet{http://mi.mathnet.ru/demr15}
\crossref{https://doi.org/10.31029/demr.4.1}
\elib{https://elibrary.ru/item.asp?id=27311207}
Linking options:
  • https://www.mathnet.ru/eng/demr15
  • https://www.mathnet.ru/eng/demr/y2015/i4/p1
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :50
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024