Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 12, Pages 56–66
DOI: https://doi.org/10.26907/0021-3446-2021-12-56-66
(Mi ivm9736)
 

This article is cited in 2 scientific papers (total in 2 papers)

Sobolev orthogonal systems with two discrete points and Fourier series

M. G. Magomed-Kasumovab

a Daghestan Federal Research Centre of the Russian Academy of Sciences, 45 M. Gadjiev str., Makhachkala, 367000 Russia
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences, 53 Vatutin str., Vladikavkaz, 362027 Russia
Full-text PDF (409 kB) Citations (2)
References:
Abstract: We consider properties of systems $\Phi_1$ orthogonal with respect to a discrete-continuous Sobolev inner product of the form $\langle f,g \rangle_S = f(a)g(a)+f(b)g(b)+\int_a^b f'(t)g'(t)dt$. In particular, we study completeness of the $\Phi_1$ systems in the Sobolev space $W^1_{L^2}$. Additionally, we analyze properties of the Fourier series with respect to $\Phi_1$ systems and prove that these series converge uniformly to functions from $W^1_{L^2}$.
Keywords: discrete-continuous inner product, Sobolev inner product, Fabe–Schauder system, Jacobi polynomials with negative parameters, Fourier series, uniform convergence, coincidence at the ends of the segment, completeness of Sobolev systems.
Received: 06.02.2021
Revised: 06.02.2021
Accepted: 29.06.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 12, Pages 47–55
DOI: https://doi.org/10.3103/S1066369X21120057
Document Type: Article
UDC: 517.538
Language: Russian
Citation: M. G. Magomed-Kasumov, “Sobolev orthogonal systems with two discrete points and Fourier series”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12, 56–66; Russian Math. (Iz. VUZ), 65:12 (2021), 47–55
Citation in format AMSBIB
\Bibitem{Mag21}
\by M.~G.~Magomed-Kasumov
\paper Sobolev orthogonal systems with two discrete points and Fourier series
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 12
\pages 56--66
\mathnet{http://mi.mathnet.ru/ivm9736}
\crossref{https://doi.org/10.26907/0021-3446-2021-12-56-66}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 12
\pages 47--55
\crossref{https://doi.org/10.3103/S1066369X21120057}
Linking options:
  • https://www.mathnet.ru/eng/ivm9736
  • https://www.mathnet.ru/eng/ivm/y2021/i12/p56
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :53
    References:25
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024