A. K. Bazzaev, D. K. Gutnova, “About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition”, Sib. elektron. matem. izv., Tom 18, #1, str. 548 – 560 (2021).
DOI 10.33048/semi.2021.18.040
A. K. Bazzaev, “Ob ustoichivosti i skhodimosti raznostnykh skhem, approksimiruyuschikh tretyu kraevuyu zadachu dlya obobschennogo uravneniya diffuzii drobnogo poryadka”, Sib. elektron. matem. izv., 17 (2020), 738–752
A. K. Bazzaev, I. D. Tsopanov, “Raznostnye skhemy dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Ufimsk. matem. zhurn., 11:2 (2019), 19–35; Ufa Math. J., 11:2 (2019), 19–33
A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernye skhemy dlya uravneniya diffuzii s drobnoi proizvodnoi po vremeni v oblasti proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 56:1 (2016), 113–123; Comput. Math. Math. Phys., 56:1 (2016), 106–115
A. K. Bazzaev, I. D. Tsopanov, “Lokalno-odnomernye raznostnye skhemy dlya uravneniya diffuzii drobnogo poryadka s drobnoi proizvodnoi v mladshikh chlenakh”, Sib. elektron. matem. izv., 12 (2015), 80–91
A. K. Bazzaev, “Raznostnye skhemy dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami tretego roda v mnogomernoi oblasti”, Ufimsk. matem. zhurn., 5:1 (2013), 11–16; Ufa Math. J., 5:1 (2013), 11–16
A. K. Bazzaev, A. B. Mambetova, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti drobnogo poryadka s sosredotochennoi teploemkostyu”, Zh. vychisl. matem. i matem. fiz., 52:9 (2012), 1656–1665
A. K. Bazzaev, D. K. Gutnova, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya parabolicheskogo uravneniya s nelokalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1048–1057
A. K. Bazzaev, “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti s kraevymi usloviyami tretego roda”, Vladikavk. matem. zhurn., 13:1 (2011), 3–12
A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1200–1208; Comput. Math. Math. Phys., 50:7 (2010), 1141–1149
A. K. Bazzaev, “On the convergence of locally one-dimensional schemes for the differential equation in partial derivatives of fractional orders in a multidimensional domain”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1064–1078
2021
2.
A. K. Bazzaev, D. K. Gutnova, “About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 548–560
2020
3.
A. K. Bazzaev, “On the stability and convergence of difference schemes for the generalized fractional diffusion equation with Robin boundary value conditions”, Sib. Èlektron. Mat. Izv., 17 (2020), 738–752
2019
4.
A. K. Bazzaev, I. D. Tsopanov, “Difference schemes for partial differential equations of fractional order”, Ufimsk. Mat. Zh., 11:2 (2019), 19–35; Ufa Math. J., 11:2 (2019), 19–33
A. K. Bazzaev, M. Kh. Shhanukov-Lafishev, “On the convergence of difference schemes for fractional differential equations with Robin boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017), 122–132; Comput. Math. Math. Phys., 57:1 (2017), 133–144
A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain”, Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016), 113–123; Comput. Math. Math. Phys., 56:1 (2016), 106–115
A. K. Bazzaev, I. D. Tsopanov, “Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms”, Sib. Èlektron. Mat. Izv., 12 (2015), 80–91
2014
8.
A. K. Bazzaev, “Locally one dimensional scheme of the Dirichlet boundary value problem for fractional diffusion equation with space Caputo fractional derivative”, Vladikavkaz. Mat. Zh., 16:2 (2014), 3–13
2013
9.
A. K. Bazzaev, “Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain”, Ufimsk. Mat. Zh., 5:1 (2013), 11–16; Ufa Math. J., 5:1 (2013), 11–16
A. K. Bazzaev, A. B. Mambetova, M. H. Shhanukov-Lafishev, “Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1656–1665
A. K. Bazzaev, D. K. Gutnova, M. H. Shhanukov-Lafishev, “Locally one-dimensional scheme for a parabolic equation with a nonlocal condition”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1048–1057
A. K. Bazzaev, “Local one-dimensional scheme for the third boundary value problem for the heat equation”, Vladikavkaz. Mat. Zh., 13:1 (2011), 3–12
2010
13.
A. K. Bazzaev, “Ïåðâàÿ êðàåâàÿ çàäà÷à äëÿ îáîáùåííîãî óðàâíåíèÿ ïàðàáîëè÷åñêîãî òèïà c äðîáíîé ïðîèçâîäíîé ïî âðåìåíè â ìíîãîìåðíîé îáëàñòè”, Matem. Mod. Kraev. Zadachi, 3 (2010), 35–38
14.
A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “A locally one-dimensional scheme for a fractional-order diffusion equation with boundary conditions of the third kind”, Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010), 1200–1208; Comput. Math. Math. Phys., 50:7 (2010), 1141–1149