Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 2, Pages 19–33
DOI: https://doi.org/10.13108/2019-11-2-19
(Mi ufa469)
 

This article is cited in 2 scientific papers (total in 2 papers)

Difference schemes for partial differential equations of fractional order

A. K. Bazzaevab, I. D. Tsopanovb

a Khetagurov North-Ossetia State University, Vatutina str., 44-46, 362025, Vladikavkaz, Russia
b Vladikavkaz Administration Institute, Borodinskaya str., 14, 362025, Vladikavkaz, Russia
References:
Abstract: Nowadays, fractional differential equations arise while describing physical systems with such properties as power nonlocality, long-term memory and fractal property. The order of the fractional derivative is determined by the dimension of the fractal. Fractional mathematical calculus in the theory of fractals and physical systems with memory and non-locality becomes as important as classical analysis in continuum mechanics.
In this paper we consider higher order difference schemes of approximation for differential equations with fractional-order derivatives with respect to both spatial and time variables. Using the maximum principle, we obtain apriori estimates and prove the stability and the uniform convergence of difference schemes.
Keywords: initial-boundary value problem, fractional differential equations, Caputo fractional derivative, stability, slow diffusion equation, difference scheme, maximum principle, stability, uniform convergence, apriori estimate, heat capacity concentrated at the boundary.
Received: 31.05.2018
Bibliographic databases:
Document Type: Article
UDC: 519.633
MSC: 65M12
Language: English
Original paper language: Russian
Citation: A. K. Bazzaev, I. D. Tsopanov, “Difference schemes for partial differential equations of fractional order”, Ufa Math. J., 11:2 (2019), 19–33
Citation in format AMSBIB
\Bibitem{BazTso19}
\by A.~K.~Bazzaev, I.~D.~Tsopanov
\paper Difference schemes for partial differential equations of fractional order
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 2
\pages 19--33
\mathnet{http://mi.mathnet.ru//eng/ufa469}
\crossref{https://doi.org/10.13108/2019-11-2-19}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511171600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078655530}
Linking options:
  • https://www.mathnet.ru/eng/ufa469
  • https://doi.org/10.13108/2019-11-2-19
  • https://www.mathnet.ru/eng/ufa/v11/i2/p19
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:477
    Russian version PDF:324
    English version PDF:32
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024