Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 1, Pages 113–123
DOI: https://doi.org/10.7868/S0044466916010063
(Mi zvmmf10327)
 

This article is cited in 10 scientific papers (total in 10 papers)

Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain

A. K. Bazzaevab, M. Kh. Shkhanukov-Lafishevc

a Vladikavkaz Institute of Management, ul. Borodinskaya 14, Vladikavkaz, 362025, Russia
b North Ossetian State University, ul. Vatutina 44–46, Vladikavkaz, 362025, Russia
c Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russia
References:
Abstract: Locally one-dimensional difference schemes are considered as applied to a fractional diffusion equation with variable coefficients in a domain of complex geometry. They are proved to be stable and uniformly convergent for the problem under study.
Key words: fractional diffusion equation, Caputo fractional derivative, stability and convergence of difference schemes, slow diffusion equation, locally one-dimensional difference schemes.
Received: 12.02.2014
Revised: 29.09.2014
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 1, Pages 106–115
DOI: https://doi.org/10.1134/S0965542516010061
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain”, Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016), 113–123; Comput. Math. Math. Phys., 56:1 (2016), 106–115
Citation in format AMSBIB
\Bibitem{BazShh16}
\by A.~K.~Bazzaev, M.~Kh.~Shkhanukov-Lafishev
\paper Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 1
\pages 113--123
\mathnet{http://mi.mathnet.ru/zvmmf10327}
\crossref{https://doi.org/10.7868/S0044466916010063}
\elib{https://elibrary.ru/item.asp?id=25343599}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 1
\pages 106--115
\crossref{https://doi.org/10.1134/S0965542516010061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373076900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961615399}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10327
  • https://www.mathnet.ru/eng/zvmmf/v56/i1/p113
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :96
    References:80
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024