|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
V. G. Zhadan, “Primal–dual Newton method with steepest descent for the linear semidefinite programming problem: iterative process”, Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022), 597–615 ; Comput. Math. Math. Phys., 62:4 (2022), 581–598 |
2. |
V. G. Zhadan, “Primal–dual Newton method with steepest descent for the linear semidefinite programming problem: Newton's system of equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 232–248 ; Comput. Math. Math. Phys., 62:2 (2022), 232–247 |
7
|
|
2018 |
3. |
V. G. Zhadan, “Primal Newton method for the linear cone programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018), 220–227 ; Comput. Math. Math. Phys., 58:2 (2018), 207–214 |
3
|
|
2017 |
4. |
V. G. Zhadan, “A variant of the affine-scaling method for a cone programming problem on a second-order cone”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 114–124 ; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), S231–S240 |
2
|
|
2016 |
5. |
V. G. Zhadan, “A variant of the dual simplex method for a linear semidefinite programming problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 90–100 ; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 246–256 |
2
|
6. |
V. G. Zhadan, “A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016), 1248–1266 ; Comput. Math. Math. Phys., 56:7 (2016), 1220–1237 |
2
|
|
2015 |
7. |
V. G. Zhadan, “On a variant of the simplex method for a linear semidefinite programming problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 117–127 |
2
|
|
2014 |
8. |
V. G. Zhadan, “On a variant of a feasible affine scaling method for semidefinite programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 145–160 |
2
|
|
2013 |
9. |
V. G. Zhadan, A. A. Orlov, “Primal-dual Newton method for a linear problem of semidefinite programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 157–169 |
1
|
|
2012 |
10. |
V. G. Zhadan, A. A. Orlov, “An admissible dual internal point method for a linear semidefinite programming problem”, Avtomat. i Telemekh., 2012, no. 2, 25–40 ; Autom. Remote Control, 73:2 (2012), 232–246 |
1
|
|
2011 |
11. |
V. G. Zhadan, A. A. Orlov, “On convergence of the dual Newton method for linear semidefinite programming problem”, Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011), 75–90 |
12. |
V. G. Zhadan, A. A. Orlov, “Dual interior point methods for linear semidefinite programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011), 2158–2180 ; Comput. Math. Math. Phys., 51:12 (2011), 2031–2051 |
3
|
|
2008 |
13. |
V. G. Zhadan, “Direct newton method for a linear problem of semidefinite programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008), 67–80 ; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S135–S149 |
2
|
14. |
M. S. Babynin, V. G. Zhadan, “A primal interior point method for the linear semidefinite programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1780–1801 ; Comput. Math. Math. Phys., 48:10 (2008), 1746–1767 |
10
|
|
2005 |
15. |
M. V. Vtyurina, V. G. Zhadan, “The steepest-descent barrier-projection method for linear complementarity problems”, Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005), 792–812 ; Comput. Math. Math. Phys., 45:5 (2005), 763–782 |
|
1999 |
16. |
V. G. Zhadan, “Convergence of the primal-dual Newton method for linear programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999), 431–445 ; Comput. Math. Math. Phys., 39:3 (1999), 409–422 |
17. |
V. G. Zhadan, “Primal-dual Newton method for linear programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 39:1 (1999), 17–32 ; Comput. Math. Math. Phys., 39:1 (1999), 14–28 |
2
|
|
1996 |
18. |
Yu. G. Evtushenko, V. G. Zhadan, “Dual barrier-projection and barrier-Newton methods for linear programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996), 30–45 ; Comput. Math. Math. Phys., 36:7 (1996), 847–859 |
8
|
|
1995 |
19. |
Yu. G. Evtushenko, V. G. Zhadan, A. P. Cherenkov, “The use of Newton's method for linear programming”, Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995), 850–866 ; Comput. Math. Math. Phys., 35:6 (1995), 673–686 |
7
|
|
1994 |
20. |
Yu. G. Evtushenko, V. G. Zhadan, “Barrier-projective methods for nonlinear programming”, Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994), 669–684 ; Comput. Math. Math. Phys., 34:5 (1994), 579–590 |
10
|
|
1990 |
21. |
Yu. G. Evtushenko, V. G. Zhadan, “Exact auxiliary functions in optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990), 43–57 ; U.S.S.R. Comput. Math. Math. Phys., 30:1 (1990), 31–42 |
22
|
|
1988 |
22. |
V. G. Zhadan, “An augmented Lagrange function method for multicriterion optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 28:11 (1988), 1603–1618 ; U.S.S.R. Comput. Math. Math. Phys., 28:6 (1988), 1–11 |
7
|
|
1987 |
23. |
V. G. Zhadan, V. I. Kushnirchuk, “Method of feasible directions for solving problems of convex multicriterion optimization”, Zh. Vychisl. Mat. Mat. Fiz., 27:6 (1987), 829–838 ; U.S.S.R. Comput. Math. Math. Phys., 27:3 (1987), 120–126 |
|
1986 |
24. |
V. G. Zhadan, “A method for the parametric representation of objective functions in conditional multicriterial optimization”, Zh. Vychisl. Mat. Mat. Fiz., 26:2 (1986), 177–189 ; U.S.S.R. Comput. Math. Math. Phys., 26:1 (1986), 108–115 |
4
|
|
1984 |
25. |
V. G. Zhadan, “On some estimates of the penalty coefficient in methods of exact penalty functions”, Zh. Vychisl. Mat. Mat. Fiz., 24:8 (1984), 1164–1171 ; U.S.S.R. Comput. Math. Math. Phys., 24:4 (1984), 124–128 |
5
|
26. |
V. G. Zhadan, “A class of iterative methods of solution of convex programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 24:5 (1984), 665–676 ; U.S.S.R. Comput. Math. Math. Phys., 24:3 (1984), 25–32 |
|
1983 |
27. |
A. I. Golikov, V. G. Zhadan, “Two modifications of the linearization method in nonlinear programming”, Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983), 314–325 ; U.S.S.R. Comput. Math. Math. Phys., 23:2 (1983), 36–44 |
3
|
|
1982 |
28. |
V. G. Zhadan, “Modified Lagrangian functions in nonlinear programming”, Zh. Vychisl. Mat. Mat. Fiz., 22:2 (1982), 296–308 ; U.S.S.R. Comput. Math. Math. Phys., 22:2 (1982), 43–57 |
4
|
|
1980 |
29. |
V. G. Zhadan, “On two classes of methods of solving nonlinear programming problems”, Dokl. Akad. Nauk SSSR, 254:3 (1980), 531–534 |
30. |
A. I. Golikov, V. G. Zhadan, “Iterative methods for solving non-linear programming problems, using modified Lagrange functions”, Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980), 874–888 ; U.S.S.R. Comput. Math. Math. Phys., 20:4 (1980), 62–78 |
3
|
|
1977 |
31. |
Yu. G. Evtushenko, V. G. Zhadan, “A relaxation method for solving problems of non-linear programming”, Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977), 890–904 ; U.S.S.R. Comput. Math. Math. Phys., 17:4 (1977), 73–87 |
30
|
|
1975 |
32. |
Yu. G. Evtushenko, V. G. Zhadan, “An application of the method of Ljapunov functions to the study of the convergence of numerical methods”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 101–112 ; U.S.S.R. Comput. Math. Math. Phys., 15:1 (1975), 96–108 |
11
|
|
1973 |
33. |
Yu. G. Evtushenko, V. G. Zhadan, “Numerical methods of solving some operational research problems”, Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973), 583–598 ; U.S.S.R. Comput. Math. Math. Phys., 13:3 (1973), 56–77 |
20
|
|
|
|
1996 |
34. |
Yu. G. Evtushenko, V. G. Zhadan, “Letter to the editor: Concerning some publications on internal point methods”, Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996), 161–162 ; Comput. Math. Math. Phys., 36:12 (1996), 1777–1778 |
2
|
|
Presentations in Math-Net.Ru |
1. |
Íîâûå ÷èñëåííûå ìåòîäû â îïòèìèçàöèè V. G. Zhadan
International Conference on Applied Mathematics and Computer Science dedicated
to the 60th Anniversary of Dorodnicyn Computing Centre of RAS December 10, 2015 18:50
|
|
|
Organisations |
|
|
|
|