Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 114–124
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-114-124
(Mi timm1442)
 

This article is cited in 2 scientific papers (total in 2 papers)

A variant of the affine-scaling method for a cone programming problem on a second-order cone

V. G. Zhadan

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Full-text PDF (215 kB) Citations (2)
References:
Abstract: A linear cone programming problem in which the cone is the direct product of second-order cones (Lorentz cones) is considered. For its solution we propose a direct affine-scaling type method generalizing the corresponding method used in linear programming. The method can be considered as a special way to solve a system of necessary and sufficient optimality conditions for a pair of mutually dual cone programming problems. These conditions are used to derive the dependence of the dual variables on the primal variables, and the dependence is substituted into the complementarity condition. The obtained system of equations is solved with respect to the primal variables by the simple iteration method. The starting points in the method belong to the cone but do not necessarily satisfy the linear equality-type constraints. The local linear convergence of the method is proved under the assumption that the solutions of the primal and dual problems are nondegenerate and strictly complementary.
Keywords: cone programming, second-order cone, affine-scaling method, local convergence.
Received: 31.05.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages S231–S240
DOI: https://doi.org/10.1134/S0081543818090250
Bibliographic databases:
Document Type: Article
UDC: 519.856
MSC: 90С22
Language: Russian
Citation: V. G. Zhadan, “A variant of the affine-scaling method for a cone programming problem on a second-order cone”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 114–124; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), S231–S240
Citation in format AMSBIB
\Bibitem{Zha17}
\by V.~G.~Zhadan
\paper A variant of the affine-scaling method for a cone programming problem on a second-order cone
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 114--124
\mathnet{http://mi.mathnet.ru/timm1442}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-114-124}
\elib{https://elibrary.ru/item.asp?id=29938004}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages S231--S240
\crossref{https://doi.org/10.1134/S0081543818090250}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100010}
Linking options:
  • https://www.mathnet.ru/eng/timm1442
  • https://www.mathnet.ru/eng/timm/v23/i3/p114
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :114
    References:37
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024