Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 7, Pages 1248–1266
DOI: https://doi.org/10.7868/S0044466916070188
(Mi zvmmf10426)
 

This article is cited in 2 scientific papers (total in 2 papers)

A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem

V. G. Zhadan

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (571 kB) Citations (2)
References:
Abstract: The linear semidefinite programming problem is considered. The dual affine scaling method in which all current iterations belong to the feasible set is proposed for its solution. Moreover, the boundaries of the feasible set may be reached. This method is a generalization of a version of the affine scaling method that was earlier developed for linear programs to the case of semidefinite programming.
Key words: linear semidefinite programming problem, dual affine scaling method, steepest descent.
Received: 02.08.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 7, Pages 1220–1237
DOI: https://doi.org/10.1134/S0965542516070186
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: V. G. Zhadan, “A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016), 1248–1266; Comput. Math. Math. Phys., 56:7 (2016), 1220–1237
Citation in format AMSBIB
\Bibitem{Zha16}
\by V.~G.~Zhadan
\paper A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 7
\pages 1248--1266
\mathnet{http://mi.mathnet.ru/zvmmf10426}
\crossref{https://doi.org/10.7868/S0044466916070188}
\elib{https://elibrary.ru/item.asp?id=26302234}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 7
\pages 1220--1237
\crossref{https://doi.org/10.1134/S0965542516070186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000381223400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979731403}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10426
  • https://www.mathnet.ru/eng/zvmmf/v56/i7/p1248
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024