|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
V. G. Pimenov, A. B. Lozhnikov, “Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024), 138–151 |
|
2023 |
2. |
V. G. Pimenov, E. E. Tashirova, “Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay”, Izv. IMI UdGU, 62 (2023), 71–86 |
3. |
V. G. Pimenov, A. B. Lozhnikov, “Richardson Method for a Diffusion Equation with Functional Delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023), 133–144 ; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S204–S215 |
1
|
|
2022 |
4. |
V. G. Pimenov, A. B. Lozhnikov, M. Ibrahim, “Numerical methods for systems of diffusion and superdiffusion equations with Neumann boundary conditions and with delay”, Dal'nevost. Mat. Zh., 22:2 (2022), 218–224 |
5. |
M. Ibrahim, V. G. Pimenov, “Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions”, Izv. IMI UdGU, 59 (2022), 41–54 |
|
2021 |
6. |
V. G. Pimenov, E. E. Tashirova, “Numerical method for fractional diffusion-wave equations with functional delay”, Izv. IMI UdGU, 57 (2021), 156–169 |
7. |
M. Ibrahim, V. G. Pimenov, “Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay”, Izv. IMI UdGU, 57 (2021), 128–141 |
|
2019 |
8. |
T. V. Gorbova, V. G. Pimenov, S. I. Solodushkin, “Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator”, Sib. Èlektron. Mat. Izv., 16 (2019), 1587–1599 |
1
|
|
2017 |
9. |
V. G. Pimenov, “Numerical method for fractional advection-diffusion equation with heredity”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017), 86–90 ; J. Math. Sci. (N. Y.), 230:5 (2018), 737–741 |
4
|
|
2016 |
10. |
V. G. Pimenov, A. S. Hendy, “An implicit numerical method for the solution of the fractional advection-diffusion equation with delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016), 218–226 |
3
|
11. |
Vladimir G. Pimenov, Ahmed S. Hendy, “Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay”, Ural Math. J., 2:1 (2016), 48–57 |
9
|
|
2015 |
12. |
V. G. Pimenov, M. A. Panachev, “One-step numerical methods for mixed functional differential equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015), 187–197 |
|
2014 |
13. |
V. G. Pimenov, S. V. Sviridov, “Grid methods of solving advection equations with delay”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3, 59–74 |
|
2012 |
14. |
V. G. Pimenov, “Numerical methods for solving the evolutionary equations with delay”, Izv. IMI UdGU, 2012, no. 1(39), 103–104 |
1
|
15. |
V. G. Pimenov, E. E. Tashirova, “Numerical methods for solving a hereditary equation of hyperbolic type”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012), 222–231 ; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 126–136 |
12
|
|
2011 |
16. |
V. G. Pimenov, A. B. Lozhnikov, “Difference schemes for the numerical solution of the heat conduction equation with aftereffect”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011), 178–189 ; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S137–S148 |
24
|
|
2010 |
17. |
V. G. Pimenov, “Difference schemes in modeling evolutionary control systems with delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 151–158 |
1
|
18. |
A. V. Lekomtsev, V. G. Pimenov, “Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010), 102–118 ; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S101–S118 |
14
|
|
2009 |
19. |
A. V. Lekomtsev, V. G. Pimenov, “A semiexplicit method for numerical solution of functional differential algebraic equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 5, 62–67 ; Russian Math. (Iz. VUZ), 53:5 (2009), 54–58 |
3
|
|
2008 |
20. |
V. G. Pimenov, “Numerical methods of solution for heat equation with delay”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2, 113–116 |
3
|
|
2007 |
21. |
V. G. Pimenov, “Multistep numerical methods for functional-differential-algebraic equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 145–155 ; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S201–S212 |
2
|
|
2002 |
22. |
V. G. Pimenov, “Numerical methods for solving initial and boundary value problems for functional differential equations”, Izv. IMI UdGU, 2002, no. 2(25), 75–78 |
|
2001 |
23. |
V. G. Pimenov, “General Linear Methods for the Numerical Solution of Functional-Differential Equations”, Differ. Uravn., 37:1 (2001), 105–114 ; Differ. Equ., 37:1 (2001), 116–127 |
25
|
|
1998 |
24. |
A. V. Kim, V. G. Pimenov, “Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998), 119–142 |
3
|
|
1995 |
25. |
V. G. Pimenov, “The concept of generalized controls for functional-differential systems”, Differ. Uravn., 31:6 (1995), 980–989 ; Differ. Equ., 31:6 (1995), 917–925 |
|
1991 |
26. |
V. G. Pimenov, “On the existence of generalized optimal controls in systems with delay in the control”, Differ. Uravn., 27:12 (1991), 2174–2176 |
|
Organisations |
|
|
|
|