Loading [MathJax]/jax/output/CommonHTML/config.js
Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2016, Volume 2, Issue 1, Pages 48–57
DOI: https://doi.org/10.15826/umj.2016.1.005
(Mi umj14)
 

This article is cited in 11 scientific papers (total in 11 papers)

Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay

Vladimir G. Pimenovab, Ahmed S. Hendyb

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
b Department of Computational Mathematics, Ural Federal University, Ekaterinburg, Russia
References:
Abstract: For two sided space fractional diffusion equation with time functional after-effect, an implicit numerical method is constructed and the order of its convergence is obtained. The method is a fractional analogue of the Crank-Nicholson method, and also uses interpolation and extrapolation of the prehistory of model with respect to time.
Keywords: Fractional partial differential equation, Grunwald-Letnikov approximations, Grid schemes, Functional delay, Interpolation, Extrapolation, Convergence order.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
Russian Science Foundation 14-35-00005
This work was supported by Government of the Russian Federation program 02.A03.21.0006 on 27.08.2013 and by Russian Science Foundation 14-35-00005.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vladimir G. Pimenov, Ahmed S. Hendy, “Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay”, Ural Math. J., 2:1 (2016), 48–57
Citation in format AMSBIB
\Bibitem{PimHen16}
\by Vladimir~G.~Pimenov, Ahmed~S.~Hendy
\paper Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay
\jour Ural Math. J.
\yr 2016
\vol 2
\issue 1
\pages 48--57
\mathnet{http://mi.mathnet.ru/umj14}
\crossref{https://doi.org/10.15826/umj.2016.1.005}
\zmath{https://zbmath.org/?q=an:1398.65217}
\elib{https://elibrary.ru/item.asp?id=26501482}
Linking options:
  • https://www.mathnet.ru/eng/umj14
  • https://www.mathnet.ru/eng/umj/v2/i1/p48
  • This publication is cited in the following 11 articles:
    1. A. A. Issakhov, A. B. Abylkassymova, R. E. Zhailybaev, S. L. Yun, “STABILITY CONDITION OF FINITE DIFFERENCE SCHEMES FOR PARABOLIC AND HYPERBOLIC EQUATIONS: A COMPARISON WITH FINITE VOLUME METHODS FOR FRACTIONAL-ORDER DIFFUSION”, jour, 22:1 (2025), 184  crossref
    2. V. G. Pimenov, A. B. Lozhnikov, “Asimptoticheskoe razlozhenie pogreshnosti chislennogo metoda dlya resheniya superdiffuzionnogo uravneniya s funktsionalnym zapazdyvaniem”, Tr. IMM UrO RAN, 30, no. 2, 2024, 138–151  mathnet  crossref  elib
    3. V. G. Pimenov, A. V. Lekomtsev, “Kompaktnaya skhema dlya resheniya superdiffuzionnogo uravneniyas neskolkimi peremennymi zapazdyvaniyami”, Vestnik rossiiskikh universitetov. Matematika, 29:148 (2024), 440–454  mathnet  crossref
    4. M. Ibrahim, V. G. Pimenov, “Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay”, Izv. IMI UdGU, 57 (2021), 128–141  mathnet  crossref
    5. M. Kh. Beshtokov, F. A. Erzhibova, “On Boundary Value Problems for Fractional-Order Differential Equations”, Sib. Adv. Math., 31:4 (2021), 229  crossref
    6. Tursun K. Yuldashev, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 020016  crossref
    7. M. Kh. Beshtokov, F. A. Erzhibova, “K kraevym zadacham dlya integro-differentsialnykh uravnenii drobnogo poryadka”, Matem. tr., 23:1 (2020), 16–36  mathnet  crossref
    8. M. Kh. Beshtokov, “Kraevye zadachi dlya nagruzhennogo modifitsirovannogo uravneniya vlagoperenosa drobnogo poryadka s operatorom Besselya i raznostnye metody ikh resheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:2 (2020), 158–175  mathnet  crossref
    9. Svyatoslav Solodushkin, Tatiana Gorbova, Vladimir Pimenov, Springer Proceedings in Mathematics & Statistics, 333, Differential and Difference Equations with Applications, 2020, 689  crossref
    10. Vladimir Pimenov, Ahmed Hendy, Mohammad Ibrahim, PROCEEDINGS OF THE X ALL-RUSSIAN CONFERENCE “Actual Problems of Applied Mathematics and Mechanics” with International Participation, Dedicated to the Memory of Academician A.F. Sidorov and 100th Anniversary of UrFU: AFSID-2020, 2312, PROCEEDINGS OF THE X ALL-RUSSIAN CONFERENCE “Actual Problems of Applied Mathematics and Mechanics” with International Participation, Dedicated to the Memory of Academician A.F. Sidorov and 100th Anniversary of UrFU: AFSID-2020, 2020, 050017  crossref
    11. Irina Iumanova, Svyatoslav Solodushkin, Springer Proceedings in Mathematics & Statistics, 333, Differential and Difference Equations with Applications, 2020, 373  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :107
    References:62
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025