Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 2, Pages 133–144
DOI: https://doi.org/10.21538/0134-4889-2023-29-2-133-144
(Mi timm2004)
 

This article is cited in 1 scientific paper (total in 1 paper)

Richardson Method for a Diffusion Equation with Functional Delay

V. G. Pimenova, A. B. Lozhnikovb

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (227 kB) Citations (1)
References:
Abstract: A diffusion equation with a functional delay effect is considered. The problem is discretized. Constructions of the Crank–Nicolson difference method with piecewise linear interpolation and extrapolation by continuation are given; the method here has the second order of smallness with respect to the sampling steps in time $\Delta$ and space $h$. The basic Crank–Nicolson method with piecewise cubic interpolation and extrapolation by continuation is constructed. The order of the residual without interpolation of the basic method is studied, and the expansion coefficients of the residual with respect to $\Delta$ and $h$ are written. An equation for the leading term of the asymptotic expansion of the global error is written. Under certain assumptions, the validity of the application of the Richardson extrapolation procedure is substantiated and an appropriate method is constructed. The main of these assumptions is the consistency of the orders of smallness of $\Delta$ and $h$. It is proved that the method has order $O(\Delta^4+h^4)$. The results of numerical experiments on test examples are presented.
Keywords: diffusion equation, functional delay, Crank–Nicolson method, piecewise cubic interpolation, extrapolation by continuation, Richardson method.
Funding agency Grant number
Russian Science Foundation 22-21-00075
This work was supported by the Russian Science Foundation (project no. 22-21-00075).
Received: 14.03.2023
Revised: 10.04.2023
Accepted: 17.04.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S204–S215
DOI: https://doi.org/10.1134/S0081543823030173
Bibliographic databases:
Document Type: Article
UDC: 519.633
MSC: 65N06, 65Q20
Language: Russian
Citation: V. G. Pimenov, A. B. Lozhnikov, “Richardson Method for a Diffusion Equation with Functional Delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 2, 2023, 133–144; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S204–S215
Citation in format AMSBIB
\Bibitem{PimLoz23}
\by V.~G.~Pimenov, A.~B.~Lozhnikov
\paper Richardson Method for a Diffusion Equation with Functional Delay
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 2
\pages 133--144
\mathnet{http://mi.mathnet.ru/timm2004}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-2-133-144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4610497}
\elib{https://elibrary.ru/item.asp?id=53846810}
\edn{https://elibrary.ru/lrfyfq}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S204--S215
\crossref{https://doi.org/10.1134/S0081543823030173}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171324151}
Linking options:
  • https://www.mathnet.ru/eng/timm2004
  • https://www.mathnet.ru/eng/timm/v29/i2/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024