Modular representations of algebraic groups, restrictions ot subgroups, the behaviour of unipotent elements in representations, permutation groups
Main publications:
Osinovskaya A.A., “Restrictions of irreducible
representations of classical algebraic groups to root
$A_1$-subgroups”, Commun. in Algebra, 31:5 (2003), 2357–2379
Osinovskaya A.A., Suprunenko I.D., “On the Jordan block
structure of images of some unipotent elements in modular
irreducible representations of the classical algebraic groups”, J. Algebra, 273:2 (2004), 586–600
A.A. Baranov, A.A. Osinovskaya and I.D.
Suprunenko, “Modular representations of classical groups with small weight multiplicities”, Journal of Mathematical Sciences, 161:1 (2009), 163–175
A. A. Osinovskaya, “Weyl submodules in the restrictions of representations of simple algebraic groups to subgroups $SL_2(K)$”, Tr. Inst. Mat., 31:2 (2023), 57–62
2.
I. D. Suprunenko, T. S. Busel, A. A. Osinovskaya, “Special factors in the restrictions of irreducible modules of classical groups to subsystem subgroups with two simple components”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 259–273
3.
V. I. Yanchevskiĭ, A. S. Kondrat'ev, T. S. Busel, A. A. Osinovskaya, “To the memory of Irina Dmitrievna Suprunenko”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 280–287
4.
A. A. Osinovskaya, “Composition factors of the restrictions of modular representations of $SL_{r+1}(K)$ to semisimple subgroups”, Zap. Nauchn. Sem. POMI, 522 (2023), 113–124
2022
5.
A. A. Osinovskaya, “Estimates for the number of large composition factors in the restrictions of representations of special linear groups on subsystem subgroups of type $A_{2}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022), 155–165
2021
6.
A. A. Osinovskaya, “The restrictions of representations of special linear groups to subsystem subgroups of type $A_1\times A_1$”, Tr. Inst. Mat., 29:1-2 (2021), 176–188
A. A. Osinovskaya, “The restrictions of representations of the special linear group to subsystem subgroups of type $A_2$”, Zap. Nauchn. Sem. POMI, 455 (2017), 130–153; J. Math. Sci. (N. Y.), 234:2 (2018), 203–218
A. A. Osinovskaya, I. D. Suprunenko, “Inductive systems of representations with small highest weights for natural embeddings of symplectic groups”, Tr. Inst. Mat., 22:2 (2014), 109–118
A. A. Osinovskaya, “Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups”, Zap. Nauchn. Sem. POMI, 430 (2014), 202–218; J. Math. Sci. (N. Y.), 219:3 (2016), 473–483
A. S. Kondrat'ev, A. A. Osinovskaya, I. D. Suprunenko, “On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 179–186; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S108–S115
A. A. Osinovskaya, “Restrictions of modules over classical groups to subgroups of type $A_2$ in characteristic 2”, Zap. Nauchn. Sem. POMI, 386 (2011), 227–241; J. Math. Sci. (N. Y.), 180:3 (2012), 330–337
A. A. Osinovskaya, “Restrictions of modular representations of special linear groups to $A_1\times A_1$ subgroups”, Sibirsk. Mat. Zh., 51:5 (2010), 1120–1128; Siberian Math. J., 51:5 (2010), 892–898
A. A. Osinovskaya, I. D. Suprunenko, “Representations of algebraic groups of type $C_n$ with small weight multiplicities”, Zap. Nauchn. Sem. POMI, 375 (2010), 140–166; J. Math. Sci. (N. Y.), 171:3 (2010), 386–399
A. A. Osinovskaya, I. D. Suprunenko, “Representations of algebraic groups of type $D_n$ in characteristic 2 with small weight multiplicities”, Zap. Nauchn. Sem. POMI, 365 (2009), 182–195; J. Math. Sci. (N. Y.), 161:4 (2009), 558–564
A. A. Osinovskaya, “Regular unipotent elements from naturally embedded subgroups of rank 2 in modular representations of classical groups”, Zap. Nauchn. Sem. POMI, 356 (2008), 159–178; J. Math. Sci. (N. Y.), 156:6 (2009), 943–953
A. A. Osinovskaya, “On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r<n$”, Tr. Inst. Mat., 15:2 (2007), 69–77
18.
M. V. Velichko, A. A. Osinovskaya, I. D. Suprunenko, “The group generated by round permutations of the cryptosystem BelT”, Tr. Inst. Mat., 15:1 (2007), 15–21