Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 179–186 (Mi timm975)  

This article is cited in 7 scientific papers (total in 8 papers)

On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group

A. S. Kondrat'evab, A. A. Osinovskayac, I. D. Suprunenkoc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named after B. N. Yeltsin
c Institute of Mathematics of the National Academy of Sciences of Belarus
Full-text PDF (181 kB) Citations (8)
References:
Abstract: Let $G=SL_n(q)$, where $n\geq2$ and $q$ is a power of a prime $p$. A Zinger cycle of the group $G$ is its cyclic subgroup of order $(q^n-1)/(q-1)$. Here absolutely irreducible $G$-modules over a field of the defining characteristic $p$ where an element of a fixed prime order $m$ from a Zinger cycle of $G$ acts freely are classified in the following three cases: a) the residue of $q$ modulo $m$ generates the multiplicative group of the field of order $m$ (in particular, this holds for $m=3$); b) $m=5$; c) $n=2$.
Keywords: special linear group, Zinger cycle, absolutely irreducible module, free action of an element.
Received: 07.07.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 285, Issue 1, Pages S108–S115
DOI: https://doi.org/10.1134/S0081543814050113
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. S. Kondrat'ev, A. A. Osinovskaya, I. D. Suprunenko, “On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 179–186; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S108–S115
Citation in format AMSBIB
\Bibitem{KonOsiSup13}
\by A.~S.~Kondrat'ev, A.~A.~Osinovskaya, I.~D.~Suprunenko
\paper On the behavior of elements of prime order from a~Zinger cycle in representations of a~special linear group
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 179--186
\mathnet{http://mi.mathnet.ru/timm975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363309}
\elib{https://elibrary.ru/item.asp?id=20234984}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S108--S115
\crossref{https://doi.org/10.1134/S0081543814050113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903288874}
Linking options:
  • https://www.mathnet.ru/eng/timm975
  • https://www.mathnet.ru/eng/timm/v19/i3/p179
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :116
    References:78
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024