Abstract:
Let $G=SL_n(q)$, where $n\geq2$ and $q$ is a power of a prime $p$. A Zinger cycle of the group $G$ is its cyclic subgroup of order $(q^n-1)/(q-1)$. Here absolutely irreducible $G$-modules over a field of the defining characteristic $p$ where an element of a fixed prime order $m$ from a Zinger cycle of $G$ acts freely are classified in the following three cases: a) the residue of $q$ modulo $m$ generates the multiplicative group of the field of order $m$ (in particular, this holds for $m=3$); b) $m=5$; c) $n=2$.
Keywords:
special linear group, Zinger cycle, absolutely irreducible module, free action of an element.
Citation:
A. S. Kondrat'ev, A. A. Osinovskaya, I. D. Suprunenko, “On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 179–186; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S108–S115
\Bibitem{KonOsiSup13}
\by A.~S.~Kondrat'ev, A.~A.~Osinovskaya, I.~D.~Suprunenko
\paper On the behavior of elements of prime order from a~Zinger cycle in representations of a~special linear group
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 179--186
\mathnet{http://mi.mathnet.ru/timm975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363309}
\elib{https://elibrary.ru/item.asp?id=20234984}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S108--S115
\crossref{https://doi.org/10.1134/S0081543814050113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903288874}
Linking options:
https://www.mathnet.ru/eng/timm975
https://www.mathnet.ru/eng/timm/v19/i3/p179
This publication is cited in the following 8 articles:
V. I. Yanchevskii, A. S. Kondratev, T. S. Busel, A. A. Osinovskaya, “Pamyati Iriny Dmitrievny Suprunenko”, Tr. IMM UrO RAN, 29, no. 1, 2023, 280–287
A. S. Kondratev, “Konechnye 4-primarnye gruppy s nesvyaznym grafom Gryunberga–Kegelya, soderzhaschim treugolnik”, Algebra i logika, 62:1 (2023), 76–92
Kondrat'ev A.S. Minigulov N.A., “On Finite Non-Solvable Groups Whose Gruenberg-Kegel Graphs Are Isomorphic to the Paw”, Commun. Math. Stat., 2021
John Cullinan, Alexandre Zalesski, “Unisingular representations in arithmetic and Lie theory”, European Journal of Mathematics, 7:4 (2021), 1645
A. E. Zalesski, “Invariants of maximal tori and unipotent constituents of some quasi-projective characters for finite classical groups”, J. Algebra, 500:SI (2018), 517–541
A. E. Zalesski, “Singer cycles in 2-modular representations of the group”, Arch. Math., 110:5 (2018), 433–446
O. A. Alekseeva, A. S. Kondrat'ev, “Finite groups whose prime graphs do not contain triangles. II”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 19–30
A. S. Kondratev, “O konechnykh gruppakh s nebolshim prostym spektrom, II”, Vladikavk. matem. zhurn., 17:2 (2015), 22–31