|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
S. I. Dudov, M. A. Osiptsev, “Sufficient Conditions for a Minimum of a Strongly Quasiconvex Function on a Weakly Convex Set”, Mat. Zametki, 111:1 (2022), 39–53 ; Math. Notes, 111:1 (2022), 33–46 |
|
2021 |
2. |
S. I. Dudov, M. A. Osiptsev, “Distance between strongly and weakly convex sets”, Izv. Saratov Univ. Math. Mech. Inform., 21:4 (2021), 434–441 |
3. |
S. I. Dudov, M. A. Osiptsev, “Characterization of solutions of strong-weak convex programming problems”, Mat. Sb., 212:6 (2021), 43–72 ; Sb. Math., 212:6 (2021), 782–809 |
5
|
|
2020 |
4. |
V. V. Abramova, S. I. Dudov, M. A. Osiptsev, “The external estimate of the compact set by Lebesgue set of the convex function”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 142–153 |
1
|
|
2019 |
5. |
S. I. Dudov, M. A. Osiptsev, “A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set”, Mat. Zametki, 106:5 (2019), 660–668 ; Math. Notes, 106:5 (2019), 703–710 |
6. |
S. I. Dudov, M. A. Osiptsev, “Spherical shell of the boundary of a compact set with a minimum cross-sectional area formed by a two-dimensional plane”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 169–182 ; Comput. Math. Math. Phys., 59:1 (2019), 160–173 |
|
2016 |
7. |
S. I. Dudov, M. A. Osiptsev, “Stability of best approximation of a convex body by a ball of fixed radius”, Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016), 535–550 ; Comput. Math. Math. Phys., 56:4 (2016), 525–540 |
1
|
|
2015 |
8. |
S. I. Dudov, M. A. Osiptsev, “On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 273–279 |
|
2014 |
9. |
S. I. Dudov, M. A. Osipcev, “On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 267–272 |
1
|
|
1999 |
10. |
M. A. Osiptsev, “A coefficient estimate for harmonic automorphisms of the circle”, Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 7, 42–45 ; Russian Math. (Iz. VUZ), 43:7 (1999), 42–45 |
|
Presentations in Math-Net.Ru |
1. |
Об остром минимуме в задаче чебышевского приближения S. I. Dudov, M. A. Osiptsev
XXII International Saratov Winter School
"Contemporary Problems of Function Theory and Their Applications",
dedicated to the 300th anniversary of the Russian Academy of Sciences January 28, 2024 15:30
|
|
|
Organisations |
|
|
|
|