Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 4, Pages 535–550
DOI: https://doi.org/10.7868/S0044466916040086
(Mi zvmmf10370)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stability of best approximation of a convex body by a ball of fixed radius

S. I. Dudov, M. A. Osiptsev

Saratov State University
Full-text PDF (231 kB) Citations (1)
References:
Abstract: The finite-dimensional problem of the best approximation (in the Hausdorff metric) of a convex body by a ball of arbitrary norm with a fixed radius is considered. The stability and sensitivity of the solution to errors in specifying the convex body to be approximated and the unit ball of the used norm are analyzed. It is shown that the solution of the problem is stable with respect to the functional and, if the solution is unique, the center of the best approximation ball is stable as well. The sensitivity of the solution to the error with respect to the functional is estimated (regardless of the radius of the ball). A sensitivity estimate for the center of the best approximation ball is obtained under the additional assumption that the estimated body and the ball of the used norm are strongly convex. This estimate is related to the range of radii of the approximating ball.
Key words: approximation of a convex body by a ball, Hausdorff metric, stability of solution, distance function, strong convexity, sensitivity.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1520.2014/К
This work was supported by the Ministry for Education and Science of the Russian Federation, project no. 1.1520.2014/K.
Received: 30.06.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 4, Pages 525–540
DOI: https://doi.org/10.1134/S0965542516040072
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: S. I. Dudov, M. A. Osiptsev, “Stability of best approximation of a convex body by a ball of fixed radius”, Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016), 535–550; Comput. Math. Math. Phys., 56:4 (2016), 525–540
Citation in format AMSBIB
\Bibitem{DudOsi16}
\by S.~I.~Dudov, M.~A.~Osiptsev
\paper Stability of best approximation of a convex body by a ball of fixed radius
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 4
\pages 535--550
\mathnet{http://mi.mathnet.ru/zvmmf10370}
\crossref{https://doi.org/10.7868/S0044466916040086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3540557}
\elib{https://elibrary.ru/item.asp?id=25772312}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 4
\pages 525--540
\crossref{https://doi.org/10.1134/S0965542516040072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376415600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971264910}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10370
  • https://www.mathnet.ru/eng/zvmmf/v56/i4/p535
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :59
    References:72
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024