Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 2, Pages 142–153
DOI: https://doi.org/10.18500/1816-9791-2020-20-2-142-153
(Mi isu834)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

The external estimate of the compact set by Lebesgue set of the convex function

V. V. Abramova, S. I. Dudov, M. A. Osiptsev

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
Full-text PDF (289 kB) Citations (1)
References:
Abstract: The finite-dimensional problem of embedding a given compact $D \subset \mathbb{R}^p$ into the lower Lebesgue set $G (\alpha) = \{y \in \mathbb{R}^p: f (y) \leqslant \alpha \}$ of the convex function $f(\cdot)$ with the smallest value of $\alpha$ due to the offset of $D$ is considered. Its mathematical formalization leads to the problem of minimizing the function $\phi (x) = \max\limits_{y \in D} f (y - x)$ on $\mathbb{R}^p$. The properties of the function $\phi(x)$ are researched, necessary and sufficient conditions and conditions for the uniqueness of the problem solution are obtained. As an important case for applications, the case when $f(\cdot)$ is the Minkowski gauge function of some convex body $M$ is singled out. It is shown that if $M$ is a polyhedron, then the problem reduces to a linear programming problem. The approach to get an approximate solution is proposed in which, having known the approximation of $x_i$ to obtain $x_{i+1}$ it is necessary to solve the simpler problem of embedding the compact set $D$ into the Lebesgue set of the gauge function of the set $M_i= G(a_i)$, where $a_i = f(x_i )$. The rationale for the convergence for a sequence of approximations to the problem solution is given.
Key words: gauge function, external estimate, subdifferential, quasiconvex function, strongly convex set, strongly convex function.
Received: 12.03.2019
Accepted: 05.06.2019
Bibliographic databases:
Document Type: Article
UDC: 519.853
Language: Russian
Citation: V. V. Abramova, S. I. Dudov, M. A. Osiptsev, “The external estimate of the compact set by Lebesgue set of the convex function”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 142–153
Citation in format AMSBIB
\Bibitem{AbrDudOsi20}
\by V.~V.~Abramova, S.~I.~Dudov, M.~A.~Osiptsev
\paper The external estimate of the compact set by Lebesgue set of the convex function
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 2
\pages 142--153
\mathnet{http://mi.mathnet.ru/isu834}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-2-142-153}
\elib{https://elibrary.ru/item.asp?id=43021436}
Linking options:
  • https://www.mathnet.ru/eng/isu834
  • https://www.mathnet.ru/eng/isu/v20/i2/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :53
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024