Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Alikhanov, Anatoly Alievich

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9
Presentations: 2

Number of views:
This page:1818
Abstract pages:4315
Full texts:1828
References:551
Associate professor
Candidate of physico-mathematical sciences
Birth date: 15.03.1981
E-mail:
Keywords: partial differential equations, difference schemes.
UDC: 519.633

Subject:

Numerical methods, mathematical physics.

   
Main publications:
  1. Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differentsialnye uravneniya, 46:5 (2010), 658–664
  2. Alikhanov A. A., “Ob ustoichivosti i skhodimosti nelokalnykh raznostnykh skhem”, Differentsialnye uravneniya, 46:7 (2010), 942–954
  3. Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Applied Mathematics and Computation, 219:8 (2012), 3938–3946
  4. Alikhanov A. A., “Ustoichivost i skhodimost raznostnykh skhem, approksimiruyuschikh dvukhparametricheskuyu nelokalnuyu kraevuyu zadachu”, Differentsialnye uravneniya, 49:7 (2013), 826–836
  5. Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, Journal of Computational Physics, 280 (2015), 424–438

https://www.mathnet.ru/eng/person30195
List of publications on Google Scholar
List of publications on ZentralBlatt
https://orcid.org/0000-0003-0684-6667
https://www.scopus.com/authid/detail.url?authorId=25031002000

Publications in Math-Net.Ru Citations
2021
1. A. A. Alikhanov, A. M. Apekov, A. Kh. Khibiev, “Higher-order approximation difference scheme for the generalized aller equation of fractional order”, Vladikavkaz. Mat. Zh., 23:3 (2021),  5–15  mathnet 1
2. A. A. Alikhanov, M. KH. Beshtokov, M. H. Shhanukov-Lafishev, “Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021),  1082–1100  mathnet  elib; Comput. Math. Math. Phys., 61:7 (2021), 1075–1093  isi  scopus
2017
3. S.Sh. Rekhviashvili, A. A. Alikhanov, “Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field”, Fizika i Tekhnika Poluprovodnikov, 51:6 (2017),  787–791  mathnet  elib; Semiconductors, 51:6 (2017), 755–759 4
2016
4. A. A. Alikhanov, “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016),  572–586  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 56:4 (2016), 561–575  isi  scopus 13
2013
5. A. A. Alikhanov, “The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  15–23  mathnet  elib 4
2008
6. A. A. Alikhanov, “Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008),  13–20  mathnet 6
7. A. A. Alikhanov, A. M. Berezgov, M. H. Shhanukov-Lafishev, “Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods”, Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1619–1628  mathnet  mathscinet; Comput. Math. Math. Phys., 48:9 (2008), 1581–1590  isi  scopus 59
2006
8. A. A. Alikhanov, “Априорные оценки для параболических уравнений с подвижной нагрузкой”, Matem. Mod. Kraev. Zadachi, 3 (2006),  22–25  mathnet 1
2005
9. A. A. Alikhanov, “К вопросу об аппроксимации дифференциального уравнения дробного порядка разностным уравнением”, Matem. Mod. Kraev. Zadachi, 3 (2005),  21–24  mathnet

Presentations in Math-Net.Ru
1. Устойчивость и сходимость разностных схем второго порядка аппроксимации для диффузионно-волновых уравнений
A. A. Alikhanov

November 7, 2022 15:50
2. Разностные схемы второго порядка аппроксимации для телеграфного уравнения дробного порядка по времени
A. A. Alikhanov
The Fifth International Conference "Supercomputer Technologies of Mathematical Modelling"
June 30, 2022 10:40

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024