Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 4, Pages 572–586
DOI: https://doi.org/10.7868/S0044466916040049
(Mi zvmmf10375)
 

This article is cited in 13 scientific papers (total in 13 papers)

Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation

A. A. Alikhanov

Institute of Applied Mathematics and Automation, Nalchik
References:
Abstract: A family of difference schemes for the fractional-order diffusion equation with variable coefficients is considered. By the method of energetic inequalities, a priori estimates are obtained for solutions of finite-difference problems, which imply the stability and convergence of the difference schemes considered. The validity of the results is confirmed by numerical calculations for test examples.
Key words: fractional-order derivative, stability and convergence of difference schemes, fractional-order diffusion equation.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-3360.2015.1
This work was supported by the Russian Federation's Presidential Program for the Support of Young Scientist, project no. MK-3360.2015.1.
Received: 19.08.2013
Revised: 03.03.2014
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 4, Pages 561–575
DOI: https://doi.org/10.1134/S0965542516040035
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. A. Alikhanov, “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016), 572–586; Comput. Math. Math. Phys., 56:4 (2016), 561–575
Citation in format AMSBIB
\Bibitem{Ali16}
\by A.~A.~Alikhanov
\paper Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 4
\pages 572--586
\mathnet{http://mi.mathnet.ru/zvmmf10375}
\crossref{https://doi.org/10.7868/S0044466916040049}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3540559}
\elib{https://elibrary.ru/item.asp?id=25772314}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 4
\pages 561--575
\crossref{https://doi.org/10.1134/S0965542516040035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376415600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971222724}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10375
  • https://www.mathnet.ru/eng/zvmmf/v56/i4/p572
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :153
    References:109
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024