|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
V. N. Kniahina, V. S. Monakhov, “Finite groups with weakly subnormal Schmidt subgroups”, Tr. Inst. Mat., 31:1 (2023), 50–57 |
|
2022 |
2. |
V. N. Kniahina, “Nilpotency of the derived subgroup of a finite group with semisubnormal Schmidt subgroups”, PFMT, 2022, no. 3(52), 86–89 |
1
|
|
2021 |
3. |
V. N. Kniahina, “Finite groups with subnormal derived subgroups of $B$-groups”, PFMT, 2021, no. 3(48), 73–75 |
|
2020 |
4. |
V. N. Knyagina, V. S. Monakhov, “Finite groups with semi-subnormal Schmidt subgroups”, Algebra Discrete Math., 29:1 (2020), 66–73 |
1
|
|
2019 |
5. |
V. N. Kniahina, I. K. Chirik, “Finite factored groups with soluble $\mathbb{X}$-subnormal factors”, PFMT, 2019, no. 2(39), 76–80 |
|
2018 |
6. |
Viktoryia N. Knyahina, Victor S. Monakhov, “On finite groups with Hall normally embedded Schmidt subgroups”, Algebra Discrete Math., 26:1 (2018), 90–96 |
|
2017 |
7. |
V. N. Kniahina, “On the product of a $B$-group and a primary group”, PFMT, 2017, no. 3(32), 52–57 |
4
|
|
2016 |
8. |
V. N. Kniahina, “On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups”, Tr. Inst. Mat., 24:1 (2016), 34–37 |
1
|
|
2013 |
9. |
V. N. Knyagina, V. S. Monakhov, “Finite groups with nilpotent and Hall subgroups”, Diskr. Mat., 25:1 (2013), 137–143 ; Discrete Math. Appl., 23:2 (2013), 175–182 |
1
|
10. |
V. N. Kniahina, V. S. Monakhov, “Finite factorizable groups with solvable $\mathbb P^2$-subnormal subgroups”, Sibirsk. Mat. Zh., 54:1 (2013), 77–85 ; Siberian Math. J., 54:1 (2013), 56–63 |
4
|
11. |
V. N. Kniahina, “Finite groups with $\mathbb{P}$-subnormal biprimary subgroups”, Tr. Inst. Mat., 21:1 (2013), 63–68 |
|
2012 |
12. |
V. N. Knyagina, V. S. Monakhov, “On the permutability of $n$-maximal subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 125–130 |
12
|
|
2011 |
13. |
V. N. Knyagina, V. S. Monakhov, “Subgroups of a Finite Group Commuting with Biprimary Subgroups”, Mat. Zametki, 89:4 (2011), 524–529 ; Math. Notes, 89:4 (2011), 499–503 |
1
|
14. |
V. N. Knyagina, V. S. Monakhov, “On the $\pi'$-properties of a finite group possessing a Hall $\pi$-subgroup”, Sibirsk. Mat. Zh., 52:2 (2011), 297–309 ; Siberian Math. J., 52:2 (2011), 234–243 |
36
|
15. |
V. N. Knyagina, V. S. Monakhov, “On the permutability of maximal subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 126–133 |
5
|
|
2010 |
16. |
V. N. Kniahina, “On $\pi$-solvability of a finite group with a partially permutable $\pi$-Hall subgroup”, PFMT, 2010, no. 1(2), 25–27 |
17. |
V. N. Knyagina, V. S. Monakhov, “On permutability of Sylow subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 130–139 ; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S55–S64 |
9
|
|
2007 |
18. |
V. N. Knyagina, V. S. Monakhov, “Finite groups with seminormal Schmidt subgroups”, Algebra Logika, 46:4 (2007), 448–458 ; Algebra and Logic, 46:4 (2007), 244–249 |
26
|
|
2004 |
19. |
V. N. Knyagina, V. S. Monakhov, “Finite groups with subnormal Schmidt subgroups”, Sibirsk. Mat. Zh., 45:6 (2004), 1316–1322 ; Siberian Math. J., 45:6 (2004), 1075–1079 |
44
|
20. |
V. N. Knyagina, V. S. Monakhov, “On the $p$-length of a product of two Schmidt groups”, Sibirsk. Mat. Zh., 45:2 (2004), 329–333 ; Siberian Math. J., 45:2 (2004), 269–272 |
1
|
|
Organisations |
|
|
|
|