Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 2, Pages 297–309 (Mi smj2197)  

This article is cited in 37 scientific papers (total in 37 papers)

On the π-properties of a finite group possessing a Hall π-subgroup

V. N. Knyaginaa, V. S. Monakhovb

a Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus, Gomel, Belarus
b Francisk Skorina Gomel State University, Gomel, Belarus
References:
Abstract: We study the π-properties of a finite group possessing a Hall π-subgroup that permutes with some Sylow subgroups or some minimal nonnilpotent subgroups.
Keywords: finite group, Hall subgroup, supplement, commuting subgroups.
Received: 17.12.2009
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 2, Pages 234–243
DOI: https://doi.org/10.1134/S0037446611020066
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Knyagina, V. S. Monakhov, “On the π-properties of a finite group possessing a Hall π-subgroup”, Sibirsk. Mat. Zh., 52:2 (2011), 297–309; Siberian Math. J., 52:2 (2011), 234–243
Citation in format AMSBIB
\Bibitem{KnyMon11}
\by V.~N.~Knyagina, V.~S.~Monakhov
\paper On the $\pi'$-properties of a~finite group possessing a~Hall $\pi$-subgroup
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 2
\pages 297--309
\mathnet{http://mi.mathnet.ru/smj2197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841549}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 2
\pages 234--243
\crossref{https://doi.org/10.1134/S0037446611020066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291987200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955773165}
Linking options:
  • https://www.mathnet.ru/eng/smj2197
  • https://www.mathnet.ru/eng/smj/v52/i2/p297
  • This publication is cited in the following 37 articles:
    1. A.-Ming Liu, Zhigang Wang, Vasily G. Safonov, Alexander N. Skiba, “On One Open Question of the Theory of σ-Properties of a Finite Group”, Commun. Math. Stat., 2024  crossref
    2. Xiaohong Zhang, Chenchen Cao, Zhenfeng Wu, “Finite groups with some σ -primary subgroups weakly m -ℋ-permutable”, Communications in Algebra, 2024, 1  crossref
    3. E. Zubei, “On a finite group with OS-propermutable Sylow subgroup”, Acta Math. Hungar., 2024  crossref
    4. Chenchen Cao, Wenbin Guo, “Characterizations of finite groups with σ-semiembedded subgroups”, J. Algebra Appl., 22:09 (2023)  crossref
    5. Venus Amjid, Muhammad Tanveer Hussain, Zhenfeng Wu, “On weakly σ-semipermutable subgroups of finite groups”, J. Algebra Appl., 22:02 (2023)  crossref
    6. Xin-Fang Zhang, Wenbin Guo, Inna N. Safonova, Alexander N. Skiba, “A Robinson description of finite PσT-groups”, Journal of Algebra, 631 (2023), 218  crossref
    7. Ch. Cao, W. Guo, Sh. Qiao, “On C-H-permutable subgroups of finite groups”, Siberian Math. J., 63:2 (2022), 356–364  mathnet  crossref  crossref
    8. Yu. Mao, X. Ma, W. Guo, “A new characterization of finite σ-soluble PσT-groups”, Siberian Math. J., 62:1 (2021), 105–113  mathnet  crossref  crossref  isi  elib
    9. Wu Zh., Guo W., “On a Theorem of Ito and Szep”, J. Group Theory, 24:2 (2021), 293–303  crossref  mathscinet  zmath  isi  scopus
    10. Guo J., Guo W., Qiao S., Zhang C., “On M-SIGMA-Embedded Subgroups of Finite Groups”, Acta Math. Hung., 165:1 (2021), 100–111  crossref  mathscinet  zmath  isi  scopus
    11. E. V. Zubei, “Konechnye gruppy s OS-properestanovochnymi podgruppami”, Chebyshevskii sb., 22:3 (2021), 457–463  mathnet  crossref
    12. Hu B., Huang J., Skiba A.N., “on the Lattice of All H-Permutable Subgroups of a Finite Group”, Bull. Iran Math. Soc., 46:2 (2020), 293–301  crossref  mathscinet  zmath  isi  scopus
    13. Adarchenko N.M., “a New Characterization of Finite SIGMA-Soluble P SIGMA T-Groups”, Algebra Discret. Math., 29:1, SI (2020), 33–41  mathnet  crossref  mathscinet  zmath  isi  scopus
    14. V. Amjid, W. Guo, B. Li, “On σ-embedded and σ-n-embedded subgroups of finite groups”, Siberian Math. J., 60:3 (2019), 389–397  mathnet  crossref  crossref  isi  elib
    15. Cao Ch., Amjid V., Zhang Ch., “on Weakly H-Permutable Subgroups of Finite Groups”, Math. Slovaca, 69:4 (2019), 763–772  crossref  mathscinet  isi
    16. Mao Yu. Cao Ch. Guo W., “on SIGMA-Conditionally Permutable Subgroups of Finite Groups”, Commun. Algebr., 47:10 (2019), 4271–4282  crossref  mathscinet  zmath  isi  scopus
    17. Wei X., “on Weakly M-SIGMA-Permutable Subgroups of Finite Groups”, Commun. Algebr., 47:3 (2019), 945–956  crossref  mathscinet  zmath  isi  scopus
    18. Zhu X., Cao Ch., Guo W., “Finite SIGMA-Soluble Groups in Which SIGMA-Permutability Is a Transitive Relation”, J. Algebra. Appl., 18:4 (2019), 1950064  crossref  mathscinet  zmath  isi  scopus
    19. C. Cao, Z. Wu, W. Guo, “Finite groups with given weakly σ-permutable subgroups”, Siberian Math. J., 59:1 (2018), 157–165  mathnet  crossref  crossref  isi  elib
    20. V. S. Monakhov, E. V. Zubei, “O perestanovochnosti silovskoi podgruppy s podgruppami Shmidta iz nekotorogo ee dobavleniya”, Tr. IMM UrO RAN, 24, no. 3, 2018, 145–154  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:461
    Full-text PDF :133
    References:88
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025