Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 125–130 (Mi timm846)  

This article is cited in 12 scientific papers (total in 12 papers)

On the permutability of n-maximal subgroups with Schmidt subgroups

V. N. Knyaginaa, V. S. Monakhovb

a Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus
b Francisk Skorina Gomel State University
References:
Abstract: A Schmidt group is a nonnilpotent group in which every proper subgroup is nilpotent. Let us fix a positive integer n and assume that each n-maximal subgroup of a finite group G is permutable with any Schmidt subgroup. We prove that, if n{1,2,3}, then G is metanilpotent and, if n4 and G is solvable, then the nilpotent length of G is at most n1.
Keywords: finite group, solvable group, Schmidt subgroup, nilpotent length.
Received: 21.11.2011
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Knyagina, V. S. Monakhov, “On the permutability of n-maximal subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 125–130
Citation in format AMSBIB
\Bibitem{KnyMon12}
\by V.~N.~Knyagina, V.~S.~Monakhov
\paper On the permutability of $n$-maximal subgroups with Schmidt subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 125--130
\mathnet{http://mi.mathnet.ru/timm846}
\elib{https://elibrary.ru/item.asp?id=17937017}
Linking options:
  • https://www.mathnet.ru/eng/timm846
  • https://www.mathnet.ru/eng/timm/v18/i3/p125
  • This publication is cited in the following 12 articles:
    1. E. V. Zubei, “Konechnye gruppy s $OS$-properestanovochnymi podgruppami”, Chebyshevskii sb., 22:3 (2021), 457–463  mathnet  crossref
    2. V. I. Murashka, “Groups with prescribed systems of Schmidt subgroups”, Siberian Math. J., 60:2 (2019), 334–342  mathnet  crossref  crossref  isi  elib
    3. Guo W., Skiba A.N., “Finite Groups Whose N-Maximal Subgroups Are SIGMA-Subnormal”, Sci. China-Math., 62:7 (2019), 1355–1372  crossref  mathscinet  zmath  isi  scopus
    4. E. V. Zubei, “O perestanovochnosti silovskikh podgrupp s kommutantami B-podgrupp”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 1 (2019), 12–17  mathnet  crossref
    5. B. Hu, J. Huang, A. N. Skiba, “On generalized $S$-quasinormal and generalized subnormal subgroups of finite groups”, Commun. Algebr., 46:4 (2018), 1758–1769  crossref  mathscinet  zmath  isi  scopus
    6. J. Huang, B. Hu, X. Zheng, “Finite groups whose $n$-maximal subgroups are modular”, Siberian Math. J., 59:3 (2018), 556–564  mathnet  crossref  crossref  isi  elib
    7. Hu B., Huang J., “On Generalized Modular Subgroups of Finite Groups”, Bull. Iran Math. Soc., 44:6 (2018), 1415–1426  crossref  mathscinet  zmath  isi  scopus
    8. Bin Hu, Jianhong Huang, A. N. Skiba, “Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal”, PFMT, 2017, no. 2(31), 40–45  mathnet
    9. A. N. Skiba, “On $\sigma$-properties of finite groups III”, PFMT, 2016, no. 1(26), 52–62  mathnet
    10. V. A. Kovaleva, “Konechnye gruppy s zadannymi obobschenno maksimalnymi podgruppami (obzor). I. Konechnye gruppy s obobschenno normalnymi $n$-maksimalnymi podgruppami”, PFMT, 2016, no. 4(29), 48–58  mathnet
    11. V. N. Knyagina, “O perestanovochnosti $n$-maksimalnykh podgrupp c $p$-nilpotentnymi podgruppami Shmidta”, Tr. In-ta matem., 24:1 (2016), 34–37  mathnet
    12. V. A. Kovaleva, Xiaolan Yi, “Finite groups with all $n$-maximal ($n = 2, 3$) subgroups $K$-$\mathfrak{U}$-subnormal”, PFMT, 2014, no. 2(19), 59–63  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :126
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025