Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 125–130 (Mi timm846)  

This article is cited in 12 scientific papers (total in 12 papers)

On the permutability of $n$-maximal subgroups with Schmidt subgroups

V. N. Knyaginaa, V. S. Monakhovb

a Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus
b Francisk Skorina Gomel State University
References:
Abstract: A Schmidt group is a nonnilpotent group in which every proper subgroup is nilpotent. Let us fix a positive integer $n$ and assume that each $n$-maximal subgroup of a finite group $G$ is permutable with any Schmidt subgroup. We prove that, if $n\in\{1,2,3\}$, then $G$ is metanilpotent and, if $n\ge4$ and $G$ is solvable, then the nilpotent length of $G$ is at most $n-1$.
Keywords: finite group, solvable group, Schmidt subgroup, nilpotent length.
Received: 21.11.2011
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Knyagina, V. S. Monakhov, “On the permutability of $n$-maximal subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 125–130
Citation in format AMSBIB
\Bibitem{KnyMon12}
\by V.~N.~Knyagina, V.~S.~Monakhov
\paper On the permutability of $n$-maximal subgroups with Schmidt subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 125--130
\mathnet{http://mi.mathnet.ru/timm846}
\elib{https://elibrary.ru/item.asp?id=17937017}
Linking options:
  • https://www.mathnet.ru/eng/timm846
  • https://www.mathnet.ru/eng/timm/v18/i3/p125
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024