01.01.09 (Discrete mathematics and mathematical cybernetics)
E-mail:
Keywords:
Discrete mathematics,
Boolean functions in cryptology,
coding theory,
combinatorics.
UDC:
519.7, 519.722
Subject:
Discrete mathematics, Boolean functions in cryptology, coding theory, combinatorics
Main publications:
Tarannikov Yu, “On resilient Boolean functions with maximal possible nonlinearity”, Progress in Cryptology . INDOCRYPT 2000, First International Conference in Cryptology in India, Calcutta, India, December 10–13, 2000. Proceedings, Lecture Notes in Computer Science, 1977, Springer-Verlag, Berlin, 2000, 19–30
Potapov, V. N., Taranenko, A. A., Tarannikov, Yu. V., “An asymptotic lower bound on the number of bent functions”, Designs, Codes and Cryptography, 92:3 (2024), 639–651, Springer-Verlag, Berlin
I. P. Baksova, Yu. V. Tarannikov, “Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 5–8
2022
2.
Yu. V. Tarannikov, “On the existence of Agievich-primitive partitions”, Diskretn. Anal. Issled. Oper., 29:4 (2022), 104–123
I. P. Baksova, Yu. V. Tarannikov, “The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3, 21–25; Moscow University Mathematics Bulletin, 77:3 (2022), 131–135
A. V. Khalyavin, M. S. Lobanov, Yu. V. Tarannikov, “On plateaued Boolean functions with the same spectrum support”, Sib. Èlektron. Mat. Izv., 13 (2016), 1346–1368
Y. V. Tarannikov, “On ranks of subsets in the space of binary vectors admitting an embedding of a Steiner system $S(2,4,v)$”, Prikl. Diskr. Mat., 2014, no. 1(23), 73–76
Y. V. Tarannikov, “Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters”, Sib. Èlektron. Mat. Izv., 11 (2014), 229–245
Yu. V. Tarannikov, “On values of the affine rank of the support of spectrum of a plateaued function”, Diskr. Mat., 18:3 (2006), 120–137; Discrete Math. Appl., 16:4 (2006), 401–421
Yu. V. Tarannikov, “On the class of Boolean functions uniformly distributed over balls with degree $1$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5, 17–21
1995
10.
Yu. V. Tarannikov, “On some estimates for the weight of $l$-balanced Boolean functions”, Diskretn. Anal. Issled. Oper., 2:4 (1995), 80–96
Yu. V. Tarannikov, “On the number of ordered pairs of $l$-balanced sets of length $n$”, Diskr. Mat., 7:3 (1995), 146–156; Discrete Math. Appl., 5:5 (1995), 503–514
12.
Yu. V. Tarannikov, “On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3, 91–93
1991
13.
Yu. V. Tarannikov, “The class of $1$-balanced functions and the complexity of its realization”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 2, 83–85