Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 4, Pages 104–123
DOI: https://doi.org/10.33048/daio.2022.29.747
(Mi da1311)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the existence of Agievich-primitive partitions

Yu. V. Tarannikovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, 1 Leninskie Gory, 119991 Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, 1 Leninskie Gory, 119991 Moscow, Russia
Full-text PDF (375 kB) Citations (1)
References:
Abstract: We prove that for any positive integer $m$ there exists the smallest positive integer $N=N_q(m)$ such that for $n>N$ there are no Agievich-primitive partitions of the space $\mathbf{F}_q^n$ into $q^m$ affine subspaces of dimension $n-m$. We give lower and upper bounds on the value $N_q(m)$ and prove that $N_q(2)=q+1$. Results of the same type for partitions into coordinate subspaces are established. Bibliogr. 16.
Keywords: affine subspace, partition of a space, bound, bent function, coordinate subspace, face, associative block design.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
This research is supported by the Ministry of Science and Higher Education of Russia as part of the program of the Moscow Center for Fundamental and Applied Mathematics (Agreement 075–15–2022–284).
Received: 11.07.2022
Revised: 28.07.2022
Accepted: 28.07.2022
Bibliographic databases:
Document Type: Article
UDC: 519.115.5
Language: Russian
Citation: Yu. V. Tarannikov, “On the existence of Agievich-primitive partitions”, Diskretn. Anal. Issled. Oper., 29:4 (2022), 104–123
Citation in format AMSBIB
\Bibitem{Tar22}
\by Yu.~V.~Tarannikov
\paper On the existence of Agievich-primitive partitions
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 4
\pages 104--123
\mathnet{http://mi.mathnet.ru/da1311}
\crossref{https://doi.org/10.33048/daio.2022.29.747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4523645}
Linking options:
  • https://www.mathnet.ru/eng/da1311
  • https://www.mathnet.ru/eng/da/v29/i4/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025