Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 3, Pages 21–25 (Mi vmumm4471)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematics

The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces

I. P. Baksova, Yu. V. Tarannikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (321 kB) Citations (4)
References:
Abstract: The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into affine subspaces of dimension $k$ are presented in the paper. Apart from their immediate interest, these bounds are important for estimating the number of bent functions generated by some constructions.
Key words: affine subspaces, partitions of a space, bounds, bent functions.
Received: 12.01.2022
English version:
Moscow University Mathematics Bulletin, 2022, Volume 77, Issue 3, Pages 131–135
DOI: https://doi.org/10.3103/S0027132222030044
Bibliographic databases:
Document Type: Article
UDC: 519.115.4
Language: Russian
Citation: I. P. Baksova, Yu. V. Tarannikov, “The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 3, 21–25; Moscow University Mathematics Bulletin, 77:3 (2022), 131–135
Citation in format AMSBIB
\Bibitem{BakTar22}
\by I.~P.~Baksova, Yu.~V.~Tarannikov
\paper The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 3
\pages 21--25
\mathnet{http://mi.mathnet.ru/vmumm4471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4480998}
\zmath{https://zbmath.org/?q=an:1498.94111}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2022
\vol 77
\issue 3
\pages 131--135
\crossref{https://doi.org/10.3103/S0027132222030044}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4471
  • https://www.mathnet.ru/eng/vmumm/y2022/i3/p21
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :16
    References:19
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024