Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Falqui, Gregorio

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 7

Number of views:
This page:180
Abstract pages:1901
Full texts:607
References:251
E-mail: ,
Website: http://www.matapp.unimib.it/~falqui/

https://www.mathnet.ru/eng/person20952
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/65075

Publications in Math-Net.Ru Citations
2019
1. Roberto Camassa, Gregorio Falqui, Giovanni Ortenzi, Marco Pedroni, “On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations”, SIGMA, 15 (2019), 087, 17 pp.  mathnet  isi  scopus 4
2011
2. Gregorio Falqui, Marco Pedroni, “Poisson Pencils, Algebraic Integrability, and Separation of Variables”, Regul. Chaotic Dyn., 16:3-4 (2011),  223–244  mathnet  mathscinet  zmath 3
2009
3. Alexander Chervov, Gregorio Falqui, Leonid Rybnikov, “Limits of Gaudin Systems: Classical and Quantum Cases”, SIGMA, 5 (2009), 029, 17 pp.  mathnet  mathscinet  zmath  isi  scopus 6
2007
4. Gregorio Falqui, “A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body”, SIGMA, 3 (2007), 032, 13 pp.  mathnet  mathscinet  zmath  isi  scopus 4
2005
5. G. Falqui, M. Perdoni, “Gel'fand–Zakharevich systems and algebraic integrability: the Volterra lattice revisited”, Regul. Chaotic Dyn., 10:4 (2005),  399–412  mathnet  mathscinet  zmath 3
2000
6. G. Falqui, F. Magri, G. Tondo, “Reduction of bi-Hamiltonian systems and separation of variables: An example from the Boussinesq hierarchy”, TMF, 122:2 (2000),  212–230  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 122:2 (2000), 176–192  isi 34
7. G. Falqui, F. Magri, M. Pedroni, J. P. Zubelli, “An elementary approach to the polynomial $\tau$-functions of the KP hierarchy”, TMF, 122:1 (2000),  23–36  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 122:1 (2000), 17–28  isi 8

8. G. Falqui, F. Magri, M. Pedroni, J. P. Zubelli, “A Bi-Hamiltonian Theory for Stationary KDV Flows and Their Separability”, Regul. Chaotic Dyn., 5:1 (2000),  33–52  mathnet  mathscinet  zmath 19

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024