Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 4, Pages 399–412
DOI: https://doi.org/10.1070/RD2005v010n04ABEH000322
(Mi rcd717)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bicentennial of C.G. Jacobi

Gel'fand–Zakharevich systems and algebraic integrability: the Volterra lattice revisited

G. Falquia, M. Perdonib

a Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Beirut 2/4, I–34014 Trieste, Italy
b Dipartimento di Ingegneria Gestionale e dell’Informazione, Università di Bergamo, Viale Marconi 5, I-24044 Dalmine (BG), Italy
Citations (3)
Abstract: In this paper we will discuss some features of the bi-Hamiltonian method for solving the Hamilton–Jacobi (H–J) equations by Separation of Variables, and make contact with the theory of Algebraic Complete Integrability and, specifically, with the Veselov–Novikov notion of algebro-geometric (AG) Poisson brackets. The bi-Hamiltonian method for separating the Hamilton–Jacobi equations is based on the notion of pencil of Poisson brackets and on the Gel'fand–Zakharevich (GZ) approach to integrable systems. We will herewith show how, quite naturally, GZ systems may give rise to AG Poisson brackets, together with specific recipes to solve the H–J equations. We will then show how this setting works by framing results by Veselov and Penskoï about the algebraic integrability of the Volterra lattice within the bi-Hamiltonian setting for Separation of Variables.
Keywords: Hamilton–Jacobi equations, bi-Hamiltonian manifolds, separation of variables, generalized Toda lattices.
Received: 28.04.2005
Accepted: 30.07.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. Falqui, M. Perdoni, “Gel'fand–Zakharevich systems and algebraic integrability: the Volterra lattice revisited”, Regul. Chaotic Dyn., 10:4 (2005), 399–412
Citation in format AMSBIB
\Bibitem{FalPer05}
\by G. Falqui, M.~Perdoni
\paper Gel'fand–Zakharevich systems and algebraic integrability: the Volterra lattice revisited
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 4
\pages 399--412
\mathnet{http://mi.mathnet.ru/rcd717}
\crossref{https://doi.org/10.1070/RD2005v010n04ABEH000322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191369}
\zmath{https://zbmath.org/?q=an:1133.37327}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RCD....10..399F}
Linking options:
  • https://www.mathnet.ru/eng/rcd717
  • https://www.mathnet.ru/eng/rcd/v10/i4/p399
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025