Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 032, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.032
(Mi sigma158)
 

This article is cited in 4 scientific papers (total in 4 papers)

A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body

Gregorio Falqui

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi, 53, 20125 Milano, Italy
Full-text PDF (247 kB) Citations (4)
References:
Abstract: We consider an $SO(4)$ Euler rigid body with two “inertia momenta” coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.
Keywords: Euler top; separation of variables; bihamiltonian manifolds.
Received: November 15, 2006; in final form February 2, 2007; Published online February 26, 2007
Bibliographic databases:
Document Type: Article
MSC: 37K10; 70H20; 14H70
Language: English
Citation: Gregorio Falqui, “A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body”, SIGMA, 3 (2007), 032, 13 pp.
Citation in format AMSBIB
\Bibitem{Fal07}
\by Gregorio Falqui
\paper A~Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body
\jour SIGMA
\yr 2007
\vol 3
\papernumber 032
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma158}
\crossref{https://doi.org/10.3842/SIGMA.2007.032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299833}
\zmath{https://zbmath.org/?q=an:1135.37026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236364}
Linking options:
  • https://www.mathnet.ru/eng/sigma158
  • https://www.mathnet.ru/eng/sigma/v3/p32
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :54
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024