Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Ruijsenaars, Simon

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8

Number of views:
This page:183
Abstract pages:1874
Full texts:746
References:317
E-mail: ,
Website: http://www.maths.leeds.ac.uk/~siru/

https://www.mathnet.ru/eng/person20705
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/151710

Publications in Math-Net.Ru Citations
2020
1. Masatoshi Noumi, Simon Ruijsenaars, Yasuhiko Yamada, “The Elliptic Painlevé Lax Equation vs. van Diejen's $8$-Coupling Elliptic Hamiltonian”, SIGMA, 16 (2020), 063, 16 pp.  mathnet  isi  scopus 4
2015
2. Simon N. M. Ruijsenaars, “Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type IV. The Relativistic Heun (van Diejen) Case”, SIGMA, 11 (2015), 004, 78 pp.  mathnet  mathscinet  isi  scopus 9
2011
3. Simon Ruijsenaars, “A Relativistic Conical Function and its Whittaker Limits”, SIGMA, 7 (2011), 101, 54 pp.  mathnet  isi  scopus 7
2009
4. Simon N. M. Ruijsenaars, “Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case”, SIGMA, 5 (2009), 049, 21 pp.  mathnet  mathscinet  zmath  isi  scopus 8
2008
5. S. Ruijsenaars, “The classical hyperbolic Askey–Wilson dynamics without bound states”, TMF, 154:3 (2008),  492–509  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 154:3 (2008), 418–432  isi  scopus 1
2006
6. S. Ruijsenaars, “Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians”, TMF, 146:1 (2006),  31–41  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 146:1 (2006), 25–33  isi  scopus 18
2002
7. S. N. M. Ruijsenaars, “A New Class of Reflectionless Second-order $\mathrm{A} \Delta \mathrm{Os}$ and Its Relation to Nonlocal Solitons”, Regul. Chaotic Dyn., 7:4 (2002),  351–391  mathnet  mathscinet  zmath 2
2001
8. S. Ruijsenaars, “Self-Adjoint A$\Delta$Os with Vanishing Reflection”, TMF, 128:1 (2001),  116–132  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 128:1 (2001), 933–945  isi 3

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024