Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 049, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.049
(Mi sigma395)
 

This article is cited in 8 scientific papers (total in 8 papers)

Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case

Simon N. M. Ruijsenaarsab

a Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
b Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
Full-text PDF (317 kB) Citations (8)
References:
Abstract: The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form $-d^2/dx^2+V(g;x)$, where the potential is an elliptic function depending on a coupling vector $g\in\mathbb R^4$. Alternatively, this operator arises from the $BC_1$ specialization of the $BC_N$ elliptic nonrelativistic Calogero–Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on $g$, we associate to this operator a self-adjoint operator $H(g)$ on the Hilbert space $\mathcal H=L^2([0,\omega_1],\,dx)$, where $2\omega_1$ is the real period of $V(g;x)$. For this association and a further analysis of $H(g)$, a certain Hilbert–Schmidt operator $\mathcal I(g)$ on $\mathcal H$ plays a critical role. In particular, using the intimate relation of $H(g)$ and $\mathcal I(g)$, we obtain a remarkable spectral invariance: In terms of a coupling vector $c\in\mathbb R^4$ that depends linearly on $g$, the spectrum of $H(g(c))$ is invariant under arbitrary permutations $\sigma(c)$, $\sigma\in S_4$.
Keywords: Heun equation; Hilbert–Schmidt operators; spectral invariance.
Received: January 19, 2009; Published online April 21, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Simon N. M. Ruijsenaars, “Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case”, SIGMA, 5 (2009), 049, 21 pp.
Citation in format AMSBIB
\Bibitem{Rui09}
\by Simon N.~M.~Ruijsenaars
\paper Hilbert--Schmidt Operators vs. Integrable Systems of Elliptic Calogero--Moser Type. III.~The Heun Case
\jour SIGMA
\yr 2009
\vol 5
\papernumber 049
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma395}
\crossref{https://doi.org/10.3842/SIGMA.2009.049}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506163}
\zmath{https://zbmath.org/?q=an:1163.33324}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061183}
Linking options:
  • https://www.mathnet.ru/eng/sigma395
  • https://www.mathnet.ru/eng/sigma/v5/p49
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024