|
This article is cited in 18 scientific papers (total in 18 papers)
Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians
S. Ruijsenaars Centre for Mathematics and Computer Science
Abstract:
Letting $A_l(x)$ denote the commuting analytic difference operators of elliptic relativistic Calogero–Moser type, we present and study zero-eigenvalue eigenfunctions for the operators $A_l(x)-A_l(-y)$ ($l=1,2,\dots,N$, $x,y\in\mathbb C^N$)
The eigenfunctions are products of elliptic gamma functions. They are invariant under permutations of $x_1,\dots,x_N$ and $y_1,\dots,y_N$ and under interchange of the step-size parameters.
Keywords:
relativistic Calogero-Moser systems, joint eigenfunctions, elliptic functional equations, elliptic gamma function.
Citation:
S. Ruijsenaars, “Zero-Eigenvalue Eigenfunctions for Differences of Elliptic Relativistic Calogero–Moser Hamiltonians”, TMF, 146:1 (2006), 31–41; Theoret. and Math. Phys., 146:1 (2006), 25–33
Linking options:
https://www.mathnet.ru/eng/tmf2006https://doi.org/10.4213/tmf2006 https://www.mathnet.ru/eng/tmf/v146/i1/p31
|
Statistics & downloads: |
Abstract page: | 354 | Full-text PDF : | 220 | References: | 50 | First page: | 1 |
|