Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Vakulenko, Sergei Avgustovich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 20
Presentations: 2

Number of views:
This page:1073
Abstract pages:5290
Full texts:2207
References:532
Doctor of physico-mathematical sciences
Birth date: 20.09.1953
E-mail: ,
Website: https://ipmnet.ru/RNCTAM/staff/v/#SAVakulenko

https://www.mathnet.ru/eng/person20501
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/213733
https://elibrary.ru/author_items.asp?authorid=2247
https://www.researchgate.net/profile/Sergey-Vakulenko-2

Publications in Math-Net.Ru Citations
2010
1. S. A. Vakulenko, M. V. Cherkai, “Destruction of dissipative structures under random actions”, TMF, 165:1 (2010),  177–192  mathnet; Theoret. and Math. Phys., 165:1 (2010), 1387–1399  isi  scopus
2008
2. A. K. Abramyan, S. A. Vakulenko, “Nonlinear Ritz method and the motion of defects”, TMF, 155:2 (2008),  202–214  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 155:2 (2008), 678–688  isi  elib  scopus 4
3. S. Vakulenko, D. Grigoriev, “Instability, complexity, and evolution”, Zap. Nauchn. Sem. POMI, 360 (2008),  31–69  mathnet  elib; J. Math. Sci. (N. Y.), 158:6 (2009), 787–808  scopus 1
2005
4. E. L. Aero, S. A. Vakulenko, “Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice”, TMF, 143:3 (2005),  357–367  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 143:3 (2005), 782–791  isi  elib 2
5. S. A. Vakulenko, D. Yu. Grigor'ev, “Evolution in random environment and structural instability”, Zap. Nauchn. Sem. POMI, 325 (2005),  28–60  mathnet  mathscinet; J. Math. Sci. (N. Y.), 138:3 (2006), 5644–5662  scopus 2
2002
6. A. K. Abramyan, S. A. Vakulenko, “Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach”, TMF, 130:2 (2002),  287–300  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 130:2 (2002), 245–255  isi 4
1997
7. S. A. Vakulenko, P. V. Gordon, “Propagation and scattering of kinks in inhomogeneous nonlinear media”, TMF, 112:3 (1997),  384–394  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 112:3 (1997), 1104–1112  isi 3
1996
8. N. M. Bessonov, S. A. Vakulenko, “Connected kink states in nonlinear inhomogeneous media”, TMF, 107:1 (1996),  115–128  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 107:1 (1996), 511–522  isi
1995
9. S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, A. I. Shafarevich, “Asymptotic solutions of the Hartree equation that are concentrated, as $h\to 0$, in a small neighborhood of a curve”, Dokl. Akad. Nauk, 345:6 (1995),  743–745  mathnet  mathscinet  zmath 6
1992
10. S. A. Vakulenko, “Verification of asymptotic solutions for one-dimensional nonlinear parabolic equations”, Mat. Zametki, 52:3 (1992),  10–16  mathnet  mathscinet  zmath; Math. Notes, 52:3 (1992), 875–880  isi
1991
11. S. A. Vakulenko, “Existence of chemical waves with a complex motion of the front”, Zh. Vychisl. Mat. Mat. Fiz., 31:5 (1991),  735–744  mathnet  mathscinet; U.S.S.R. Comput. Math. Math. Phys., 31:5 (1991), 68–76  isi 1
1989
12. S. A. Vakulenko, “Dynamic Whithan principle and its ground for parabolic equations”, Zap. Nauchn. Sem. LOMI, 179 (1989),  46–51  mathnet  mathscinet  zmath; J. Soviet Math., 57:3 (1991), 3093–3096 1
1985
13. S. A. Vakulenko, I. A. Molotkov, “Stationary wave baems in strongly nonlinear three-dimensional and inhomogeneous medium”, Zap. Nauchn. Sem. LOMI, 148 (1985),  52–60  mathnet  mathscinet  zmath 2
14. S. A. Vakulenko, “Asymptotic integration of some class of weakly nonlinear Hamilton systems”, Zap. Nauchn. Sem. LOMI, 148 (1985),  42–51  mathnet  mathscinet  zmath
1984
15. S. A. Vakulenko, “Construction of asymptotic solutions for weakly nonlinear Hamiltonian systems”, Zap. Nauchn. Sem. LOMI, 140 (1984),  36–40  mathnet  mathscinet  zmath; J. Soviet Math., 32:2 (1986), 125–128 1
1982
16. S. A. Vakulenko, I. A. Molotkov, “Waves in the linear inhomogeneous medium concentrated in the vicinity of a given curve”, Dokl. Akad. Nauk SSSR, 262:3 (1982),  587–591  mathnet  mathscinet 4
1981
17. S. A. Vakulenko, “Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation”, Zap. Nauchn. Sem. LOMI, 104 (1981),  84–92  mathnet  mathscinet  zmath; J. Soviet Math., 20:1 (1982), 1800–1806 5
1980
18. I. A. Molotkov, S. A. Vakulenko, “Nonlinear longitudinal waves in inhomogeneous rods”, Zap. Nauchn. Sem. LOMI, 99 (1980),  64–73  mathnet  mathscinet  zmath; J. Soviet Math., 20:5 (1982), 2434–2441 2
1979
19. S. A. Vakulenko, “The influence of perturbation upons solitons of some nonlinear equations”, Zap. Nauchn. Sem. LOMI, 89 (1979),  91–96  mathnet  mathscinet  zmath; J. Soviet Math., 19:4 (1982), 1350–1354 2
20. S. A. Vakulenko, “The solutions of nonlinear equations concentrated near the curves on a plane”, Zap. Nauchn. Sem. LOMI, 89 (1979),  84–90  mathnet  mathscinet  zmath; J. Soviet Math., 19:4 (1982), 1344–1349

Presentations in Math-Net.Ru
1. Universal dynamical approximation by Oberbeck-Boussinesque model
S. A. Vakulenko
Dynamical Systems and PDEs
November 24, 2021 18:00   
2. Stability, instability and evolution
S. A. Vakulenko
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
October 18, 2007

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024