Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 143, Number 3, Pages 357–367
DOI: https://doi.org/10.4213/tmf1818
(Mi tmf1818)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice

E. L. Aero, S. A. Vakulenko

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Full-text PDF (252 kB) Citations (2)
References:
Abstract: We consider a system of hyperbolic nonlinear equations describing the dynamics of interaction between optical and acoustic modes of a complex crystal lattice (without a symmetry center) consisting of two sublattices. This system can be considered a nonlinear generalization of the well-known Born–Huang Kun model to the case of arbitrarily large sublattice displacements. For a suitable choice of parameters, the system reduces to the sine-Gordon equation or to the classical equations of elasticity theory. If we introduce physically natural dissipative forces into the system, then we can prove that a compact attractor exists and that trajectories converge to equilibrium solutions. In the one-dimensional case, we describe the structure of equilibrium solutions completely and obtain asymptotic solutions for the wave propagation. In the presence of inhomogeneous perturbations, this system is reducible to the well-known Hopfield model describing the attractor neural network and having complex behavior regimes.
Keywords: nonlinearity, attractor, complex behavior, neural networks.
Received: 14.09.2004
English version:
Theoretical and Mathematical Physics, 2005, Volume 143, Issue 3, Pages 782–791
DOI: https://doi.org/10.1007/s11232-005-0105-y
Bibliographic databases:
Language: Russian
Citation: E. L. Aero, S. A. Vakulenko, “Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice”, TMF, 143:3 (2005), 357–367; Theoret. and Math. Phys., 143:3 (2005), 782–791
Citation in format AMSBIB
\Bibitem{AerVak05}
\by E.~L.~Aero, S.~A.~Vakulenko
\paper Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice
\jour TMF
\yr 2005
\vol 143
\issue 3
\pages 357--367
\mathnet{http://mi.mathnet.ru/tmf1818}
\crossref{https://doi.org/10.4213/tmf1818}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2163804}
\zmath{https://zbmath.org/?q=an:1178.37113}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...143..782A}
\elib{https://elibrary.ru/item.asp?id=17702874}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 3
\pages 782--791
\crossref{https://doi.org/10.1007/s11232-005-0105-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230528300003}
\elib{https://elibrary.ru/item.asp?id=13500696}
Linking options:
  • https://www.mathnet.ru/eng/tmf1818
  • https://doi.org/10.4213/tmf1818
  • https://www.mathnet.ru/eng/tmf/v143/i3/p357
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :215
    References:73
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024