Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 360, Pages 31–69 (Mi znsl2158)  

This article is cited in 1 scientific paper (total in 1 paper)

Instability, complexity, and evolution

S. Vakulenkoab, D. Grigorievc

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b North Western Institute of Printing, St. Petersburg State University of Technology and Design
c Université de Lille
Full-text PDF (388 kB) Citations (1)
References:
Abstract: In this paper, we consider a new class of random dynamical systems which contains in particular neural networks and complicated circuits. For these systems we consider the viability problem: we suppose that the system survives only if the system state is in a prescribed domain $\Pi$ of a phase space. The approach developed here is based on some fundamental ideas proposed by A. Kolmogorov, R. Thom, M. Gromov, L. Valiant, L. Van Valen, and others.
Under some conditions it is shown that almost all systems from this class with fixed parameters are unstable in the following sense: the probability $P_t$ to leave $\Pi$ within time interval $[0,t]$ tends to 1 as $t\to\infty$. However, if it is allowed to change these parameters sometimes (“evolutionary” case), then possibly that $P_t<1-\delta<1$ for all $t$ (“stable evolution”). Furthermore we study the properties of such stable evolution assuming that the system parameters are coded by a dicsrete code. This allows us to apply the complexity theory, coding, algorithms etc. Evolution is a Markov process of this code modification. Under some conditions we show that the stable evolution of unstable systems possesses such general fundamental property: the relative Kolmogorov complexity of the code cannot be bounded by a constant as time $t\to\infty$. For circuit models we define complexity characteristics of these circuits. We find that these complexities also have a tendency to increase during stable evolution. We give concrete examples of stable evolution. Bibl. – 80 titles.
Received: 02.12.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 158, Issue 6, Pages 787–808
DOI: https://doi.org/10.1007/s10958-009-9412-4
Bibliographic databases:
UDC: 517.958:57
Language: English
Citation: S. Vakulenko, D. Grigoriev, “Instability, complexity, and evolution”, Representation theory, dynamics systems, combinatorial methods. Part XVI, Zap. Nauchn. Sem. POMI, 360, POMI, St. Petersburg, 2008, 31–69; J. Math. Sci. (N. Y.), 158:6 (2009), 787–808
Citation in format AMSBIB
\Bibitem{VakGri08}
\by S.~Vakulenko, D.~Grigoriev
\paper Instability, complexity, and evolution
\inbook Representation theory, dynamics systems, combinatorial methods. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 360
\pages 31--69
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2158}
\elib{https://elibrary.ru/item.asp?id=13759285}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 158
\issue 6
\pages 787--808
\crossref{https://doi.org/10.1007/s10958-009-9412-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349178228}
Linking options:
  • https://www.mathnet.ru/eng/znsl2158
  • https://www.mathnet.ru/eng/znsl/v360/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :107
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024