|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
A. V. Kitaev, A. Vartanian, “One-parameter meromorphic solution of the degenerate third Painlevé equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin”, Zap. Nauchn. Sem. POMI, 520 (2023), 189–226 |
|
2019 |
2. |
Alexander V. Kitaev, “Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin”, SIGMA, 15 (2019), 046, 53 pp. |
4
|
3. |
R. Vidunas, A. V. Kitaev, “Schlesinger transformations for algebraic Painlevé VI solutions”, Zap. Nauchn. Sem. POMI, 487 (2019), 106–139 |
|
2018 |
4. |
A. V. Kitaev, A. Vartanyan, “Asymptotics of integrals of some functions related to the degenerate third Painlevé equation”, Zap. Nauchn. Sem. POMI, 473 (2018), 194–204 ; J. Math. Sci. (N. Y.), 242:5 (2019), 715–721 |
3
|
|
2017 |
5. |
A. V. Kitaev, A. G. Pronko, “Some explicit results for the generalized emptiness formation probability of the six-vertex model”, Zap. Nauchn. Sem. POMI, 465 (2017), 157–173 ; J. Math. Sci. (N. Y.), 238:6 (2019), 870–882 |
|
2015 |
6. |
R. Vidunas, A. V. Kitaev, “Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions”, Zap. Nauchn. Sem. POMI, 433 (2015), 131–155 ; J. Math. Sci. (N. Y.), 213:5 (2016), 706–722 |
3
|
|
2012 |
7. |
A. V. Kitaev, “Parametric Painlevé equations”, Zap. Nauchn. Sem. POMI, 398 (2012), 145–161 ; J. Math. Sci. (N. Y.), 192:1 (2013), 81–90 |
1
|
|
2005 |
8. |
A. V. Kitaev, “Grothendiecks dessins d'enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations”, Algebra i Analiz, 17:1 (2005), 224–275 ; St. Petersburg Math. J., 17:1 (2006), 169–206 |
28
|
|
2004 |
9. |
A. V. Kitaev, “Quadratic transformations for the third and fifth Painlevé equations”, Zap. Nauchn. Sem. POMI, 317 (2004), 105–121 ; J. Math. Sci. (N. Y.), 136:1 (2006), 3586–3595 |
4
|
|
2002 |
10. |
A. V. Kitaev, “Special functions of the isomonodromy type, rational transformations of spectral parameter, and algebraic solutions of the sixth Painlevé equation”, Algebra i Analiz, 14:3 (2002), 121–139 ; St. Petersburg Math. J., 200:3 (2003), 453–465 |
10
|
|
2000 |
11. |
N. M. Bogolyubov, M. B. Zvonarev, A. V. Kitaev, “Fluctuations near the boundaries in the six-vertex model”, Zap. Nauchn. Sem. POMI, 269 (2000), 136–142 ; J. Math. Sci. (N. Y.), 115:1 (2003), 1960–1963 |
2
|
|
1997 |
12. |
F. V. Andreev, A. V. Kitaev, “On connection formulas for asymptotics of some special solutions of the fifth Painlevé equation”, Zap. Nauchn. Sem. POMI, 243 (1997), 19–29 ; J. Math. Sci. (New York), 99:1 (2000), 808–815 |
7
|
|
1994 |
13. |
A. V. Kitaev, “Elliptic asymptotics of the first and the second Painlevé transcendents”, Uspekhi Mat. Nauk, 49:1(295) (1994), 77–140 ; Russian Math. Surveys, 49:1 (1994), 81–150 |
26
|
|
1993 |
14. |
A. V. Kitaev, “The isomonodromy technique and the elliptic asymptotics of the first Painlevé transcendent”, Algebra i Analiz, 5:3 (1993), 179–211 ; St. Petersburg Math. J., 5:3 (1994), 577–605 |
6
|
15. |
V. V. Denisenko, N. V. Erkaev, S. S. Zamai, A. V. Kitaev, A. V. Mezentsev, I. T. Matveenkov, V. G. Pivovarov, “Mathematical modeling of large-scale processes in the Earth's magnetosphere”, UFN, 163:1 (1993), 101–102 ; Phys. Usp., 36:1 (1993), 25–26 |
|
1991 |
16. |
A. V. Kitaev, “On symmetrical solutions for the first and second Painlevé equations”, Zap. Nauchn. Sem. LOMI, 187 (1991), 129–138 ; J. Math. Sci., 73:4 (1995), 494–499 |
12
|
17. |
A. A. Kapaev, A. V. Kitaev, “The limit transition $\mathbb{P}_2\to\mathbb{P}_1$”, Zap. Nauchn. Sem. LOMI, 187 (1991), 75–87 ; J. Math. Sci., 73:4 (1995), 460–467 |
3
|
18. |
A. V. Kitaev, “Turning points of linear systems and double asymptotics of the Painlevé transcendents”, Zap. Nauchn. Sem. LOMI, 187 (1991), 53–74 ; J. Math. Sci., 73:4 (1995), 446–459 |
14
|
19. |
A. R. Its, A. V. Kitaev, “Continious limit for hermitian matrix model $\Phi^6$”, Zap. Nauchn. Sem. LOMI, 187 (1991), 40–52 ; J. Math. Sci., 73:4 (1995), 436–445 |
1
|
20. |
A. V. Kitaev, “Calculation of nonperturbative parameter in matrix model $\Phi^4$”, Zap. Nauchn. Sem. LOMI, 187 (1991), 31–39 ; J. Math. Sci., 73:4 (1995), 430–435 |
2
|
21. |
A. R. Its, A. V. Kitaev, A. S. Fokas, “Matrix models of two-dimensional quantum gravity and isomonodromy solutions of “discrete Painleve equations””, Zap. Nauchn. Sem. LOMI, 187 (1991), 3–30 ; J. Math. Sci., 73:4 (1995), 415–429 |
6
|
|
1990 |
22. |
A. R. Its, A. V. Kitaev, A. S. Fokas, “The isomonodromy approach in the theory of two-dimensional quantum gravitation”, Uspekhi Mat. Nauk, 45:6(276) (1990), 135–136 ; Russian Math. Surveys, 45:6 (1990), 155–157 |
34
|
23. |
A. V. Kitaev, “The isomonodromic deformations and similarity solutions of the Einstein–Maxwell equations”, Zap. Nauchn. Sem. LOMI, 181 (1990), 65–92 ; J. Soviet Math., 62:2 (1992), 2646–2663 |
1
|
|
1989 |
24. |
A. V. Kitaev, “The justification of the asymptotic formulae obtained by the Isomonodromic Deformation Method”, Zap. Nauchn. Sem. LOMI, 179 (1989), 101–109 ; J. Soviet Math., 57:3 (1991), 3131–3135 |
11
|
|
1988 |
25. |
A. V. Kitaev, “Asymptotic description of the fourth Painleve equation solutions on the Stokes rays analogies”, Zap. Nauchn. Sem. LOMI, 169 (1988), 84–90 |
1
|
|
1987 |
26. |
A. V. Kitaev, “The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation”, Mat. Sb. (N.S.), 134(176):3(11) (1987), 421–444 ; Math. USSR-Sb., 62:2 (1989), 421–444 |
38
|
27. |
A. V. Kitaev, “The method of isomonodromic deformations for the “degenerate” third Painleve equation”, Zap. Nauchn. Sem. LOMI, 161 (1987), 45–53 |
|
1985 |
28. |
A. V. Kitaev, “Self-similar solutions of the modified nonlinear Schrödinger equation”, TMF, 64:3 (1985), 347–369 ; Theoret. and Math. Phys., 64:3 (1985), 878–894 |
19
|
|
Organisations |
|
|
|
|