Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 433, Pages 131–155 (Mi znsl6130)  

This article is cited in 3 scientific papers (total in 3 papers)

Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions

R. Vidunasa, A. V. Kitaevb

a Department of Mathematical Informatics, University of Tokyo, 113-8656 Tokyo, Japan
b Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
Full-text PDF (305 kB) Citations (3)
References:
Abstract: Algebraic solutions of the sixth Painlevé equation can be constructed with the help of $RS$-transformations of the hypergeometric equations. Construction of these transformations includes specially ramified rational coverings of the Riemann sphere and corresponding Schlesinger transformations ($S$-transformations). Some algebraic solutions can be constructed from rational coverings alone, without obtaining the corresponding pullbacked isomonodromy \break Fuchsian system, i.e., without $S$ part of the $RS$ transformations. At the same time one and the same covering can be used to pullback different hypergeometric equations, resulting in different algebraic Painlevé VI solutions. In case of high degree coverings construction of $S$ parts of the $RS$-transformations may represent some computational difficulties. This paper presents computations of explicit $RS$-pullback transformations, and derivation of algebraic Painlevé VI solutions from them. As an example, we present computation of all seed solutions for pull-backs of hyperbolic hypergeometric equations.
Key words and phrases: the sixth Painlevé equation, Schlesinger transformations, isomonodromy deformations, algebraic function, rational covering, hypergeometric equation.
Received: 18.03.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 5, Pages 706–722
DOI: https://doi.org/10.1007/s10958-016-2733-1
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: R. Vidunas, A. V. Kitaev, “Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions”, Questions of quantum field theory and statistical physics. Part 23, Zap. Nauchn. Sem. POMI, 433, POMI, St. Petersburg, 2015, 131–155; J. Math. Sci. (N. Y.), 213:5 (2016), 706–722
Citation in format AMSBIB
\Bibitem{VidKit15}
\by R.~Vidunas, A.~V.~Kitaev
\paper Computation of $RS$-pullback transformations for algebraic Painlev\'e~VI solutions
\inbook Questions of quantum field theory and statistical physics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 433
\pages 131--155
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493683}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 213
\issue 5
\pages 706--722
\crossref{https://doi.org/10.1007/s10958-016-2733-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957718254}
Linking options:
  • https://www.mathnet.ru/eng/znsl6130
  • https://www.mathnet.ru/eng/znsl/v433/p131
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :43
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024