Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 64, Number 3, Pages 347–369 (Mi tmf5032)  

This article is cited in 19 scientific papers (total in 19 papers)

Self-similar solutions of the modified nonlinear Schrödinger equation

A. V. Kitaev
References:
Received: 26.06.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 64, Issue 3, Pages 878–894
DOI: https://doi.org/10.1007/BF01018348
Bibliographic databases:
Language: Russian
Citation: A. V. Kitaev, “Self-similar solutions of the modified nonlinear Schrödinger equation”, TMF, 64:3 (1985), 347–369; Theoret. and Math. Phys., 64:3 (1985), 878–894
Citation in format AMSBIB
\Bibitem{Kit85}
\by A.~V.~Kitaev
\paper Self-similar solutions of the modified nonlinear Schr\"{o}dinger equation
\jour TMF
\yr 1985
\vol 64
\issue 3
\pages 347--369
\mathnet{http://mi.mathnet.ru/tmf5032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=818186}
\zmath{https://zbmath.org/?q=an:0589.34021}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 64
\issue 3
\pages 878--894
\crossref{https://doi.org/10.1007/BF01018348}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985C018400002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5032
  • https://www.mathnet.ru/eng/tmf/v64/i3/p347
  • This publication is cited in the following 19 articles:
    1. Saburo Kakei, “Hirota bilinear approach to GUE, NLS, and Painlevé IV”, NOLTA, 7:3 (2016), 324  crossref
    2. Reeger J.A., Fornberg B., “Painlevé IV: a Numerical Study of the Fundamental Domain and Beyond”, Physica D, 280 (2014), 1–13  crossref  isi
    3. D. Dai, A. B. J. Kuijlaars, “Painlevé IV Asymptotics for Orthogonal Polynomials with Respect to a Modified Laguerre Weight”, Stud Appl Math, 122:1 (2009), 29  crossref
    4. A H Sakka, “Linear problems and hierarchies of Painlevé equations”, J. Phys. A: Math. Theor., 42:2 (2009), 025210  crossref
    5. Jeffery C. DiFranco, Peter D. Miller, “The semiclassical modified nonlinear Schrödinger equation I: Modulation theory and spectral analysis”, Physica D: Nonlinear Phenomena, 237:7 (2008), 947  crossref
    6. Joshi, N, “On the linearization of the Painlevé III-VI equations and reductions of the three-wave resonant system”, Journal of Mathematical Physics, 48:10 (2007), 103512  crossref  mathscinet  zmath  adsnasa  isi
    7. Arthur H Vartanian, “Higher order asymptotics of the modified non-linear schrödinger equation”, Communications in Partial Differential Equations, 25:5-6 (2000), 1043  crossref
    8. Alexander R Its, Andrei A Kapaev, “Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution”, J. Phys. A: Math. Gen., 31:17 (1998), 4073  crossref
    9. V. L. Vereshchagin, “Global asymptotic formulae for the fourth Painleve transcendent”, Sb. Math., 188:12 (1997), 1739–1760  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. A V Kitaev, A H Vartanian, “Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector”, Inverse Problems, 13:5 (1997), 1311  crossref
    11. Alice E Milne, Peter A Clarkson, Andrew P Bassom, “Application of the isomonodromy deformation method to the fourth Painlevé equation”, Inverse Problems, 13:2 (1997), 421  crossref
    12. Andrew P. Bassom, Peter A. Clarkson, Andrew C. Hicks, “Bäcklund Transformations and Solution Hierarchies for the Fourth Painlevé Equation”, Stud Appl Math, 95:1 (1995), 1  crossref
    13. A R Its, A S Fokas, A A Kapaev, “On the asymptotic analysis of the Painleve equations via the isomonodromy method”, Nonlinearity, 7:5 (1994), 1291  crossref
    14. P. A. Clarkson, J. B. McLeod, NATO ASI Series, 278, Painlevé Transcendents, 1992, 1  crossref
    15. A. R. Its, NATO ASI Series, 278, Painlevé Transcendents, 1992, 49  crossref
    16. Martin D. Kruskal, Peter A. Clarkson, “The Painlevé‐Kowalevski and Poly‐Painlevé Tests for Integrability”, Stud Appl Math, 86:2 (1992), 87  crossref
    17. A. R. Its, A. V. Kitaev, A. S. Fokas, “Matrix models of two-dimensional quantum gravity and isomonodromy solutions of “discrete Painleve equations””, J. Math. Sci., 73:4 (1995), 415–429  mathnet  mathnet  crossref
    18. Peter A. Clarkson, “New exact solutions of the Boussinesq equation”, Eur. J. Appl. Math, 1:3 (1990), 279  crossref
    19. A. V. Kitaev, “The isomonodromic deformations and similarity solutions of the Einstein–Maxwell equations”, J. Soviet Math., 62:2 (1992), 2646–2663  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :189
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025