KAM theory, theory of reversible dynamical systems.
Biography
A learner of Academician V. I. Arnold.
1979–1984: a student of the Faculty for Mechanics and Mathematics of the Moscow State University. The diploma work: "Autodual diffeomorphisms and vector fields" (the scientific advisor: V. I. Arnold).
1984–1987: a post-graduate student of the Faculty for Mechanics and Mathematics of the Moscow State University (the Department of Differential Equations).
From 1987 until now: a researcher in the Institute of Energy Problems of Chemical Physics (Moscow), the USSR (Russia since 1991) Academy of Sciences (V. L. Talroze Institute since 2012). The current position is "chief researcher".
1988: the PhD thesis "Reversible dynamical systems" (the scientific advisor: V. I. Arnold).
2003: the habilitation thesis "Dynamical analysis of atomic and molecular collisions" (the scientific consultant: L. Yu. Rusin).
Main publications:
M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., 1211, Springer, Berlin, 1986
M. B. Sevryuk, “Linear reversible systems and their versal deformations”, J. Soviet Math., 60:5 (1992), 1663–1680
H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems. Order amidst Chaos, Lecture Notes in Math., 1645, Springer, Berlin, 1996
M. B. Sevryuk, “Partial preservation of frequencies and Floquet exponents in KAM theory”, Proceedings of the Steklov Institute of Mathematics, 259 (2007), 167–195
H. W. Broer and M. B. Sevryuk, “KAM Theory: Quasi-periodicity in Dynamical Systems”, Chapter 6, Handbook of Dynamical Systems. Vol. 3, Editors: H. W. Broer, B. Hasselblatt and F. Takens, Elsevier B.V., Amsterdam, 2010, 249–344
Mikhail B. Sevryuk, “Three Examples in the Dynamical Systems Theory”, SIGMA, 18 (2022), 084, 13 pp.
2017
2.
M. B. Sevryuk, “Partial preservation of frequencies and floquet exponents of invariant tori in the reversible KAM context 2”, CMFD, 63:3 (2017), 516–541
3.
Mikhail B. Sevryuk, “Herman's approach to quasi-periodic perturbations in the reversible KAM context 2”, Mosc. Math. J., 17:4 (2017), 803–823
Mikhail B. Sevryuk, “Whitney Smooth Families of Invariant Tori within the Reversible Context 2 of KAM Theory”, Regul. Chaotic Dyn., 21:6 (2016), 599–620
Mikhail B. Sevryuk, “Translation of the V. I. Arnold Paper "From Superpositions to KAM Theory" (Vladimir Igorevich Arnold. Selected–60, Moscow: PHASIS, 1997, pp. 727–740)”, Regul. Chaotic Dyn., 19:6 (2014), 734–744
Vincenzo Aquilanti, Andrea Lombardi, Mikhail B. Sevryuk, “Statistics of Energy Partitions for Many-Particle Systems in Arbitrary Dimension”, Regul. Chaotic Dyn., 19:3 (2014), 318–347
M. B. Sevryuk, “Partial Preservation of Frequencies and Floquet Exponents in KAM Theory”, Trudy Mat. Inst. Steklova, 259 (2007), 174–202; Proc. Steklov Inst. Math., 259 (2007), 167–195
M. B. Sevryuk, “Some problems of the KAM-theory: conditionally-periodic motions in typical systems”, Uspekhi Mat. Nauk, 50:2(302) (1995), 111–124; Russian Math. Surveys, 50:2 (1995), 341–353
M. B. Sevryuk, “Invariant tori of reversible systems of intermediate dimensions”, Dokl. Akad. Nauk, 328:5 (1993), 550–553; Dokl. Math., 47:1 (1993), 129–133
M. B. Sevryuk, “Estimate of the number of collisions of $n$ elastic particles on a line”, TMF, 96:1 (1993), 64–78; Theoret. and Math. Phys., 96:1 (1993), 818–826
M. B. Sevryuk, “Invariant tori of reversible systems in the presence of additional even coordinates”, Dokl. Akad. Nauk, 326:3 (1992), 421–424; Dokl. Math., 46:2 (1993), 286–289
M. B. Sevryuk, “Stationary and nonstationary stability of periodic solutions of reversible systems”, Funktsional. Anal. i Prilozhen., 23:2 (1989), 40–48; Funct. Anal. Appl., 23:2 (1989), 116–123
M. B. Sevryuk, “On invariant tori of reversible systems in the neighbourhood of an equilibrium position”, Uspekhi Mat. Nauk, 42:4(256) (1987), 191–192; Russian Math. Surveys, 42:4 (1987), 147–148
M. B. Sevryuk, “Integral homology of spaces of degenerate binary forms over $\mathbf{C}$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 5, 18–20
1984
23.
M. B. Sevryuk, “The cohomology of projectively compactified complex swallow-tails and their complements”, Uspekhi Mat. Nauk, 39:5(239) (1984), 251–252; Russian Math. Surveys, 39:5 (1984), 285–286
D. V. Anosov, A. A. Bolibrukh, V. A. Vassiliev, A. M. Vershik, A. A. Gonchar, M. L. Gromov, S. M. Gusein-Zade, V. M. Zakalyukin, Yu. S. Ilyashenko, V. V. Kozlov, M. L. Kontsevich, Yu. I. Manin, A. I. Neishtadt, S. P. Novikov, Yu. S. Osipov, M. B. Sevryuk, Ya. G. Sinai, A. N. Tyurin, L. D. Faddeev, B. A. Khesin, A. G. Khovanskii, “Vladimir Igorevich Arnol'd (on his 60th birthday)”, Uspekhi Mat. Nauk, 52:5(317) (1997), 235–255; Russian Math. Surveys, 52:5 (1997), 1117–1139
M. B. Sevryuk, “Errata: “Invariant tori of reversible systems of intermediate dimensions” [Dokl. Akad. Nauk 328 (1993), no. 5, 550–553]”, Dokl. Akad. Nauk, 346:4 (1996), 576
1993
29.
M. B. Sevryuk, “Поправки к статье “Инвариантные торы обратимых систем при наличии дополнительных четных координат” (ДАН, 1992 г., т. 326, № 3, с. 421–424)”, Dokl. Akad. Nauk, 330:5 (1993), 672