Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 4, Pages 803–823
DOI: https://doi.org/10.17323/1609-4514-2017-17-4-803-823
(Mi mmj659)
 

This article is cited in 3 scientific papers (total in 3 papers)

Herman's approach to quasi-periodic perturbations in the reversible KAM context 2

Mikhail B. Sevryuk

Talroze Institute of Energy Problems of Chemical Physics, The Russia Academy of Sciences, Leninskii prospect 38, Bldg. 2, Moscow 119334, Russia
Full-text PDF Citations (3)
References:
Abstract: We revisit non-autonomous systems depending quasi-periodically in time within the reversible context 2 of KAM theory and obtain Whitney smooth families of invariant tori in such systems via Herman's method. The reversible KAM context 2 refers to the situation where the dimension of the fixed point manifold of the reversing involution is less than half the codimension of the invariant torus in question.
Key words and phrases: KAM theory, reversible context 2, Herman's method, invariant tori, Whitney smooth families.
Bibliographic databases:
Document Type: Article
MSC: 70K43, 70H33
Language: English
Citation: Mikhail B. Sevryuk, “Herman's approach to quasi-periodic perturbations in the reversible KAM context 2”, Mosc. Math. J., 17:4 (2017), 803–823
Citation in format AMSBIB
\Bibitem{Sev17}
\by Mikhail~B.~Sevryuk
\paper Herman's approach to quasi-periodic perturbations in the reversible KAM context~2
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 4
\pages 803--823
\mathnet{http://mi.mathnet.ru/mmj659}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-4-803-823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416897600012}
Linking options:
  • https://www.mathnet.ru/eng/mmj659
  • https://www.mathnet.ru/eng/mmj/v17/i4/p803
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:111
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024