Abstract:
An explicit upper bound is obtained for the number of reflections of a billiard trajectory in a multidimensional polyhedral angle (in particular, for the number of collisions of n elastic particles on a line) in terms of a special geometrical characteristic of the angle.
Citation:
M. B. Sevryuk, “Estimate of the number of collisions of n elastic particles on a line”, TMF, 96:1 (1993), 64–78; Theoret. and Math. Phys., 96:1 (1993), 818–826
\Bibitem{Sev93}
\by M.~B.~Sevryuk
\paper Estimate of the number of collisions of $n$ elastic particles on a~line
\jour TMF
\yr 1993
\vol 96
\issue 1
\pages 64--78
\mathnet{http://mi.mathnet.ru/tmf1491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243860}
\zmath{https://zbmath.org/?q=an:0798.70009}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 96
\issue 1
\pages 818--826
\crossref{https://doi.org/10.1007/BF01074110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MN25800005}
Linking options:
https://www.mathnet.ru/eng/tmf1491
https://www.mathnet.ru/eng/tmf/v96/i1/p64
This publication is cited in the following 10 articles:
Sean Gasiorek, “Counting Collisions in an N-Billiard System Using Angles Between Collision Subspaces”, SIGMA, 16 (2020), 119, 13 pp.
S. M. Saulin, “O beguschikh volnakh v sistemakh absolyutno uprugikh chastits na pryamoi”, Chebyshevskii sb., 21:2 (2020), 341–361
J. Czyzowicz, S. Dobrev, E. Kranakis, Eduardo Pacheco, “Survivability of bouncing robots”, Discrete Math. Algorithm. Appl., 08:03 (2016), 1650042
Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco, Dominik Pająk, Lecture Notes in Computer Science, 9439, Structural Information and Communication Complexity, 2015, 285
Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco, “Localization for a system of colliding robots”, Distrib. Comput., 28:4 (2015), 245
Jurek Czyzowicz, Stefan Dobrev, Evangelos Kranakis, Eduardo Pacheco, Lecture Notes in Computer Science, 8392, LATIN 2014: Theoretical Informatics, 2014, 622
Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco, Lecture Notes in Computer Science, 7966, Automata, Languages, and Programming, 2013, 508
Wang H., Guo Y., “Synchronization on a Segment Without Localization: Algorithm and Applications”, 2009 IEEE-Rsj International Conference on Intelligent Robots and Systems, 2009, 3441–3446
Lizhou Chen, “Inversion Number and Collisions in Some Billiard Systems”, J Stat Phys, 137:2 (2009), 331
D. Burago, S. Ferleger, A. Kononenko, “Collisions in semi-dispersing billiard on Riemannian manifold”, Topology and its Applications, 122:1-2 (2002), 87