Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 96, Number 1, Pages 64–78 (Mi tmf1491)  

This article is cited in 10 scientific papers (total in 10 papers)

Estimate of the number of collisions of n elastic particles on a line

M. B. Sevryuk

Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences
References:
Abstract: An explicit upper bound is obtained for the number of reflections of a billiard trajectory in a multidimensional polyhedral angle (in particular, for the number of collisions of n elastic particles on a line) in terms of a special geometrical characteristic of the angle.
Received: 19.06.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 96, Issue 1, Pages 818–826
DOI: https://doi.org/10.1007/BF01074110
Bibliographic databases:
Language: Russian
Citation: M. B. Sevryuk, “Estimate of the number of collisions of n elastic particles on a line”, TMF, 96:1 (1993), 64–78; Theoret. and Math. Phys., 96:1 (1993), 818–826
Citation in format AMSBIB
\Bibitem{Sev93}
\by M.~B.~Sevryuk
\paper Estimate of the number of collisions of $n$ elastic particles on a~line
\jour TMF
\yr 1993
\vol 96
\issue 1
\pages 64--78
\mathnet{http://mi.mathnet.ru/tmf1491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243860}
\zmath{https://zbmath.org/?q=an:0798.70009}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 96
\issue 1
\pages 818--826
\crossref{https://doi.org/10.1007/BF01074110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MN25800005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1491
  • https://www.mathnet.ru/eng/tmf/v96/i1/p64
  • This publication is cited in the following 10 articles:
    1. Sean Gasiorek, “Counting Collisions in an N-Billiard System Using Angles Between Collision Subspaces”, SIGMA, 16 (2020), 119, 13 pp.  mathnet  crossref
    2. S. M. Saulin, “O beguschikh volnakh v sistemakh absolyutno uprugikh chastits na pryamoi”, Chebyshevskii sb., 21:2 (2020), 341–361  mathnet  crossref  mathscinet
    3. J. Czyzowicz, S. Dobrev, E. Kranakis, Eduardo Pacheco, “Survivability of bouncing robots”, Discrete Math. Algorithm. Appl., 08:03 (2016), 1650042  crossref
    4. Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco, Dominik Pająk, Lecture Notes in Computer Science, 9439, Structural Information and Communication Complexity, 2015, 285  crossref
    5. Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco, “Localization for a system of colliding robots”, Distrib. Comput., 28:4 (2015), 245  crossref
    6. Jurek Czyzowicz, Stefan Dobrev, Evangelos Kranakis, Eduardo Pacheco, Lecture Notes in Computer Science, 8392, LATIN 2014: Theoretical Informatics, 2014, 622  crossref
    7. Jurek Czyzowicz, Evangelos Kranakis, Eduardo Pacheco, Lecture Notes in Computer Science, 7966, Automata, Languages, and Programming, 2013, 508  crossref
    8. Wang H., Guo Y., “Synchronization on a Segment Without Localization: Algorithm and Applications”, 2009 IEEE-Rsj International Conference on Intelligent Robots and Systems, 2009, 3441–3446  isi
    9. Lizhou Chen, “Inversion Number and Collisions in Some Billiard Systems”, J Stat Phys, 137:2 (2009), 331  crossref
    10. D. Burago, S. Ferleger, A. Kononenko, “Collisions in semi-dispersing billiard on Riemannian manifold”, Topology and its Applications, 122:1-2 (2002), 87  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :121
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025