Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Gorbatenko, Mikhail Vladimirovich

Statistics Math-Net.Ru
Total publications: 12
Scientific articles: 12

Number of views:
This page:421
Abstract pages:4632
Full texts:1884
References:682
E-mail:

https://www.mathnet.ru/eng/person19389
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/366271

Publications in Math-Net.Ru Citations
2020
1. M. V. Gorbatenko, V. P. Neznamov, “Quantum mechanics of stationary states of particles in a space–time of classical black holes”, TMF, 205:2 (2020),  284–323  mathnet  mathscinet  elib; Theoret. and Math. Phys., 205:2 (2020), 1492–1526  isi  scopus 8
2019
2. M. V. Gorbatenko, V. P. Neznamov, “Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field”, TMF, 198:3 (2019),  489–522  mathnet  mathscinet  elib; Theoret. and Math. Phys., 198:3 (2019), 425–454  isi  scopus 3
2005
3. M. V. Gorbatenko, “Obtaining equations of motion for charged particles in the $(v/c)^3$-approximation by the Einstein–Infeld–Hoffmann method”, TMF, 142:1 (2005),  160–176  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 142:1 (2005), 138–152  isi 2
2004
4. M. V. Gorbatenko, T. M. Gorbatenko, “Can the Kerr Solution Be Found by the Einstein–Infeld–Hoffmann Method?”, TMF, 140:1 (2004),  160–176  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 140:1 (2004), 1028–1042  isi 3
1998
5. M. V. Gorbatenko, “The least action principle in general relativity theory”, TMF, 115:2 (1998),  305–311  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 115:2 (1998), 607–611  isi
1995
6. M. V. Gorbatenko, “The solution by Einstein–Infeld–Hoffmann method the problem of colour particles motion and gauge field dynamics”, TMF, 104:3 (1995),  451–462  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 104:3 (1995), 1120–1128  isi
7. M. V. Gorbatenko, “Byspinors generated by Dirac matrix field in Riemannian space”, TMF, 103:1 (1995),  32–40  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 103:1 (1995), 374–380  isi
1994
8. M. V. Gorbatenko, “Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation”, TMF, 101:1 (1994),  123–135  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 101:1 (1994), 1245–1253  isi 1
1971
9. I. V. Baum, M. V. Gorbatenko, Yu. A. Romanov, “Matrix-space dynamics with allowance for third-order terms in the Lagrangian”, TMF, 6:3 (1971),  338–347  mathnet; Theoret. and Math. Phys., 6:3 (1971), 251–262 1
1970
10. M. V. Gorbatenko, Yu. A. Romanov, “Invariance groups and differentiation in the matrix space theory”, Dokl. Akad. Nauk SSSR, 190:4 (1970),  805–808  mathnet
11. M. V. Gorbatenko, Yu. A. Romanov, “Uniform states of the matrix space in a covariant theory of a spinor field”, TMF, 3:2 (1970),  183–190  mathnet; Theoret. and Math. Phys., 3:2 (1970), 436–441 2
1969
12. M. V. Gorbatenko, Yu. A. Romanov, “New covariant approach to spinor-field theory”, TMF, 1:2 (1969),  222–237  mathnet; Theoret. and Math. Phys., 1:2 (1969), 171–182 3

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024