Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 3, Pages 489–522
DOI: https://doi.org/10.4213/tmf9578
(Mi tmf9578)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field

M. V. Gorbatenkoa, V. P. Neznamovab

a Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics, Sarov, Nizhny Novgorod Oblast, Russia
b National Research Nuclear University MEPhI, Moscow, Russia
Full-text PDF (676 kB) Citations (3)
References:
Abstract: We analyze the quantum mechanical equivalence of the metrics of a centrally symmetric uncharged gravitational field. We consider the static Schwarzschild metric in spherical and isotropic coordinates, stationary Eddington–Finkelstein and Painlevé–Gullstrand metrics, and nonstationary Lemaître–Finkelstein and Kruskal–Szekeres metrics. When the real radial functions of the Dirac equation and of the second-order equation in the Schwarzschild field are used, the domain of wave functions is restricted to the range $r>r_0$, where $r_0$ is the radius of the event horizon. A corresponding constraint also exists in other coordinates for all considered metrics. For the considered metrics, the second-order equations admit the existence of degenerate stationary bound states of fermions with zero energy. As a result, we prove that physically meaningful results for a quantum mechanical description of a particle interaction with a gravitational field are independent of the choice of a solution for the centrally symmetric static gravitational field used.
Keywords: coordinate transformation, Dirac Hamiltonian, second-order equation for fermions, effective potential, degenerate bound state.
Received: 09.04.2018
Revised: 31.05.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 3, Pages 425–454
DOI: https://doi.org/10.1134/S0040577919030073
Bibliographic databases:
PACS: 03.65.-w, 04.20.-q
Language: Russian
Citation: M. V. Gorbatenko, V. P. Neznamov, “Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field”, TMF, 198:3 (2019), 489–522; Theoret. and Math. Phys., 198:3 (2019), 425–454
Citation in format AMSBIB
\Bibitem{GorNez19}
\by M.~V.~Gorbatenko, V.~P.~Neznamov
\paper Quantum mechanical equivalence of the~metrics of a~centrally symmetric gravitational field
\jour TMF
\yr 2019
\vol 198
\issue 3
\pages 489--522
\mathnet{http://mi.mathnet.ru/tmf9578}
\crossref{https://doi.org/10.4213/tmf9578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920466}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..425G}
\elib{https://elibrary.ru/item.asp?id=37045242}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 3
\pages 425--454
\crossref{https://doi.org/10.1134/S0040577919030073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464907100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065237611}
Linking options:
  • https://www.mathnet.ru/eng/tmf9578
  • https://doi.org/10.4213/tmf9578
  • https://www.mathnet.ru/eng/tmf/v198/i3/p489
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :84
    References:58
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024