Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 101, Number 1, Pages 123–135 (Mi tmf1674)  

This article is cited in 1 scientific paper (total in 1 paper)

Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation

M. V. Gorbatenko

Federal State Unitary Enterprise 'Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics'
References:
Abstract: Equations of the translational and rotational motion of two bodies possessing intrinsic angular momentum are obtained by the Einstein–Infeld–Hoffmann method in the post-Newtonian approximation. The results agree with the Kerr metric expressed in a harmonic system of coordinates with symmetry of the spatial components of the metric with respect to its indices and with a conservation law for the total angular momentum that is the sum of the orbital and spin angular momenta, and they give the correct passage to the limit to the equation of motion of a test particle with spin.
Received: 17.06.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 101, Issue 1, Pages 1245–1253
DOI: https://doi.org/10.1007/BF01079262
Bibliographic databases:
Language: Russian
Citation: M. V. Gorbatenko, “Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation”, TMF, 101:1 (1994), 123–135; Theoret. and Math. Phys., 101:1 (1994), 1245–1253
Citation in format AMSBIB
\Bibitem{Gor94}
\by M.~V.~Gorbatenko
\paper Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation
\jour TMF
\yr 1994
\vol 101
\issue 1
\pages 123--135
\mathnet{http://mi.mathnet.ru/tmf1674}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348144}
\zmath{https://zbmath.org/?q=an:0852.53068}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 1
\pages 1245--1253
\crossref{https://doi.org/10.1007/BF01079262}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QT57100011}
Linking options:
  • https://www.mathnet.ru/eng/tmf1674
  • https://www.mathnet.ru/eng/tmf/v101/i1/p123
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :152
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024