Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Bugrij, A I

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8

Number of views:
This page:232
Abstract pages:4638
Full texts:1271
References:445
E-mail: ,

https://www.mathnet.ru/eng/person19386
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/287193

Publications in Math-Net.Ru Citations
2005
1. A. I. Bugrij, N. Z. Iorgov, V. N. Shadura, “Alternative method of calculating the eigenvalues of the transfer matrix of the τ<sub>2</sub> model for <i>N</i> = 2”, Pis'ma v Zh. Èksper. Teoret. Fiz., 82:5 (2005),  346–351  mathnet; JETP Letters, 82:5 (2005), 311–315  isi  scopus 10
2004
2. A. I. Bugrij, O. O. Lisovyy, “Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II”, TMF, 140:1 (2004),  113–127  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 140:1 (2004), 987–1000  isi 26
2001
3. A. I. Bugrij, “Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: I.”, TMF, 127:1 (2001),  143–167  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 127:1 (2001), 528–548  isi 26
1999
4. A. I. Bugrij, V. N. Shadura, “Asymptotic expression for the correlation function of twisted fields in the two-dimensional Dirac model on a lattice”, TMF, 121:2 (1999),  329–346  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 121:2 (1999), 1535–1549  isi 2
1995
5. A. I. Bugrij, V. N. Shadura, “$q$-deformed Grassmann field and the two-dimensional Ising model”, TMF, 103:3 (1995),  388–412  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 103:3 (1995), 638–659  isi 2
1994
6. A. I. Bugrij, V. N. Shadura, “Casimir effect for critical fluctuations of the 2d Ising model with mixed boundary conditions: The results of exact solution”, TMF, 100:2 (1994),  270–286  mathnet  mathscinet; Theoret. and Math. Phys., 100:2 (1994), 1001–1011  isi
1973
7. A. I. Bugrij, “Some properties of the double spectral function for dual amplitude with mandelstam analyticity $\operatorname{Re}\alpha(s)\eqslantless\operatorname{const}$”, TMF, 16:3 (1973),  355–359  mathnet  mathscinet; Theoret. and Math. Phys., 16:3 (1973), 891–894
1972
8. A. I. Bugrij, L. L. Enkovskii, N. A. Kobylinskii, V. P. Shelest, “Analytic continuation of dual amplitudes with Mandelstam analyticity”, TMF, 13:3 (1972),  313–320  mathnet; Theoret. and Math. Phys., 13:2 (1972), 1161–1166

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024