Abstract:
We construct an exact representation of the Ising partition function in the form of the SLq(2,R)-invariant functional integral for the lattice-free q-fermion field theory (q=−1). It is shown that the q-fermionization allows one to rewrite the partition function of the eight-vertex model in an external field through a functional integral with four-fermion interaction. To construct these representations, we define a lattice (l,q,s)-deformed Grassmann bispinor field and extend the Berezin integration rules to this field. At q=−1, l=s=1 we obtain the lattice q-fermion field which allows us to fermionize the two-dimensional Ising model. We show that the Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q=±1, s=±1.
Citation:
A. I. Bugrij, V. N. Shadura, “q-deformed Grassmann field and the two-dimensional Ising model”, TMF, 103:3 (1995), 388–412; Theoret. and Math. Phys., 103:3 (1995), 638–659
\Bibitem{BugSha95}
\by A.~I.~Bugrij, V.~N.~Shadura
\paper $q$-deformed Grassmann field and the two-dimensional Ising model
\jour TMF
\yr 1995
\vol 103
\issue 3
\pages 388--412
\mathnet{http://mi.mathnet.ru/tmf1311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472307}
\zmath{https://zbmath.org/?q=an:0856.17025}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 103
\issue 3
\pages 638--659
\crossref{https://doi.org/10.1007/BF02065864}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TP54200004}
Linking options:
https://www.mathnet.ru/eng/tmf1311
https://www.mathnet.ru/eng/tmf/v103/i3/p388
This publication is cited in the following 2 articles:
A. I. Bugrij, V. N. Shadura, “Asymptotic expression for the correlation function of twisted fields in the two-dimensional Dirac model on a lattice”, Theoret. and Math. Phys., 121:2 (1999), 1535–1549
Y. A. Bugrij, “Solution of 2D Ising model on triangular lattice by auxiliary $q$-deformed Grassmann field method”, Theoret. and Math. Phys., 109:3 (1996), 1590–1607