Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 140, Number 1, Pages 113–127
DOI: https://doi.org/10.4213/tmf75
(Mi tmf75)
 

This article is cited in 26 scientific papers (total in 26 papers)

Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II

A. I. Bugrij, O. O. Lisovyy

N. N. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
References:
Abstract: We calculate the pair correlation function and the magnetic susceptibility in the anisotropic Ising model on the lattice with one infinite and one finite dimension with periodic boundary conditions imposed along the second dimension. Using the exact expressions for lattice form factors, we propose formulas for arbitrary spin matrix elements, thus providing a possibility to calculate all multipoint correlation functions in the anisotropic Ising model on cylindrical and toroidal lattices. We analyze passing to the scaling limit.
Keywords: Ising model, correlation function, susceptibility, form factor, finite-size lattice.
Received: 28.07.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 140, Issue 1, Pages 987–1000
DOI: https://doi.org/10.1023/B:TAMP.0000033035.90327.1f
Bibliographic databases:
Language: Russian
Citation: A. I. Bugrij, O. O. Lisovyy, “Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II”, TMF, 140:1 (2004), 113–127; Theoret. and Math. Phys., 140:1 (2004), 987–1000
Citation in format AMSBIB
\Bibitem{BugLis04}
\by A.~I.~Bugrij, O.~O.~Lisovyy
\paper Correlation Function of the Two-Dimensional Ising Model on a~Finite Lattice:~II
\jour TMF
\yr 2004
\vol 140
\issue 1
\pages 113--127
\mathnet{http://mi.mathnet.ru/tmf75}
\crossref{https://doi.org/10.4213/tmf75}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2110896}
\zmath{https://zbmath.org/?q=an:1178.82015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...140..987B}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 140
\issue 1
\pages 987--1000
\crossref{https://doi.org/10.1023/B:TAMP.0000033035.90327.1f}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223573800009}
Linking options:
  • https://www.mathnet.ru/eng/tmf75
  • https://doi.org/10.4213/tmf75
  • https://www.mathnet.ru/eng/tmf/v140/i1/p113
    Cycle of papers
    This publication is cited in the following 26 articles:
    1. Gamayun O., Iorgov N., Zhuravlev Yu., “Effective Free-Fermionic Form Factors and the Xy Spin Chain”, SciPost Phys., 10:3 (2021), 070  crossref  mathscinet  isi
    2. Forrester P.J., Perk H.H., Trinh A.K., Witte N.S., “Leading Corrections to the Scaling Function on the Diagonal For the Two-Dimensional Ising Model”, J. Stat. Mech.-Theory Exp., 2019, 023106  crossref  mathscinet  isi  scopus
    3. Mei T., “Exact Expressions of Spin-Spin Correlation Functions of the Two-Dimensional Rectangular Ising Model on a Finite Lattice”, Entropy, 20:4 (2018), 277  crossref  isi  scopus  scopus
    4. Grosjean N., Maillet J.-M., Niccoli G., “On the Form Factors of Local Operators in the Bazhanov-Stroganov and Chiral Potts Models”, Ann. Henri Poincare, 16:5 (2015), 1103–1153  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Chen Y., Doyon B., “Form Factors in Equilibrium and Non-Equilibrium Mixed States of the Ising Model”, J. Stat. Mech.-Theory Exp., 2014, P09021  crossref  mathscinet  isi  scopus  scopus
    6. Tracy C.A. Widom H., “On the Diagonal Susceptibility of the Two-Dimensional Ising Model”, J. Math. Phys., 54:12 (2013), 123302  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Gavrylenko P., Iorgov N., Lisovyy O., “Form factors of twist fields in the lattice Dirac theory”, J. Phys. A: Math. Theor., 45:2 (2012), 025402  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Witte N.S. Forrester P.J., “Fredholm Determinant Evaluations of the Ising Model Diagonal Correlations and their Lambda Generalization”, Stud. Appl. Math., 128:2 (2012), 183–223  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Grosjean N., Niccoli G., “The Tau(2)-Model and the Chiral Potts Model Revisited: Completeness of Bethe Equations From Sklyanin's Sov Method”, J. Stat. Mech.-Theory Exp., 2012, P11005  crossref  mathscinet  isi  scopus  scopus
    10. Schuricht D. Essler F.H.L., “Dynamics in the Ising Field Theory After a Quantum Quench”, J. Stat. Mech.-Theory Exp., 2012, P04017  crossref  isi  elib  scopus  scopus
    11. Iorgov N., “Form factors of the finite quantum XY-chain”, J. Phys. A: Math. Theor., 44:33 (2011), 335005  crossref  zmath  isi  scopus  scopus
    12. Iorgov N., Lisovyy O., “Finite-lattice form factors in free-fermion models”, J Stat Mech Theory Exp, 2011, P04011  crossref  isi  scopus  scopus
    13. Iorgov N., Lisovyy O., “Ising Correlations and Elliptic Determinants”, J Stat Phys, 143:1 (2011), 33–59  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    14. Huang Yu.-K., “Biorthonormal transfer-matrix renormalization-group method for non-Hermitian matrices”, Phys Rev E, 83:3, Part 1 (2011), 036702  crossref  adsnasa  isi  scopus  scopus
    15. Hystad G., “Periodic Ising Correlations”, J Math Phys, 52:1 (2011), 013302  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    16. N Iorgov, V Shadura, Yu Tykhyy, “Spin operator matrix elements in the quantum Ising chain: fermion approach”, J. Stat. Mech., 2011:02 (2011), P02028  crossref
    17. Palmer J., Hystad G., “Spin matrix for the scaled periodic Ising model”, J Math Phys, 51:12 (2010), 123301  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    18. Iorgov N., Pakuliak S., Shadura V., Tykhyy Y., von Gehlen G., “Spin Operator Matrix Elements in the Superintegrable Chiral Potts Quantum Chain”, J Stat Phys, 139:5 (2010), 743–768  crossref  mathscinet  zmath  adsnasa  isi  scopus
    19. Khachatryan, S, “Characteristics of two-dimensional lattice models from a fermionic realization: Ising and XYZ models”, Physical Review B, 80:12 (2009), 125128  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    20. von Gehlen G., Iorgov N., Pakuliak S., Shadura V., “Factorized Finite-Size Ising Model Spin Matrix Elements From Separation of Variables”, J. Phys. A-Math. Theor., 42:30 (2009), 304026  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:719
    Full-text PDF :303
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025